We use some essential cookies to make this website work.
We'd like to set additional cookies to understand how you use our site so we can improve it for everyone. Also, we'd like to serve you some cookies set by other services to show you relevant content.
Our eight research groups are harnessing and exploiting quantum physics research in order to create transformational commercial products with the potential to change the way we live and work.
Let us inspire you
We work with leading industry partners in commercialising our ground-breaking research. Quantum technologies will provide disruptive capabilities for numerous applications across a range of sectors.
Our specialised facilities and expertise are unique and have given rise to many world firsts. Our Doctoral and Industry Training Academy provides authentic quantum technology training, with an emphasis on entrepreneurship and engineering excellence.
Work with us to carry out research with impact and make the world a better place.
Centre of Excellence
The Sussex Centre for Quantum Technologies is a Centre of Excellence. Our Centres of Excellence are drawing together world-leading experts and innovative approaches, creating a critical mass of knowledge, skills and training – and proving that a challenge is only impossible until it's done.
First ever blueprint unveiled to construct a large scale quantum computer
Posted on behalf of: School of Mathematical and Physical Sciences
Last updated: Monday, 6 February 2017
Dr Bjorn Lekitsch (left) and Prof Winfried Hensinger behind a quantum computer prototype at the University of Sussex.
An international team, led by a scientist from the University of Sussex, have today unveiled the first practical blueprint for how to build a quantum computer, the most powerful computer on Earth.
This huge leap forward towards creating a universal quantum computer is published today (1 February 2017) in the influential journal Science Advances.
It has long been known that such a computer would revolutionise industry, science and commerce on a similar scale as the invention of ordinary computers. But this new work features the actual industrial blueprint to construct such a large-scale machine, more powerful in solving certain problems than any computer ever constructed before.
Once built, the computer’s capabilities mean it would have the potential to answer many questions in science; create new, lifesaving medicines; solve the most mind-boggling scientific problems; unravel the yet unknown mysteries of the furthest reaches of deepest space; and solve some problems that an ordinary computer would take billions of years to compute.
The work features a new invention permitting actual quantum bits to be transmitted between individual quantum computing modules in order to obtain a fully modular large-scale machine capable of reaching nearly arbitrary large computational processing powers.
Previously, scientists had proposed using fibre optic connections to connect individual computer modules. The new invention introduces connections created by electric fields that allow charged atoms (ions) to be transported from one module to another. This new approach allows 100,000 times faster connection speeds between individual quantum computing modules compared to current state-of-the-art fibre link technology.
The new blueprint is the work of an international team of scientists from the University of Sussex (UK), Google (USA), Aarhus University (Denmark), RIKEN (Japan) and Siegen University (Germany).
Professor Winfried Hensinger, head of the Ion Quantum Technology Group at the University of Sussex, who has been leading this research, said: “For many years, people said that it was completely impossible to construct an actual quantum computer. With our work we have not only shown that it can be done but now we are delivering a nuts and bolts construction plan to build an actual large-scale machine.”
Lead author Dr Bjoern Lekitsch, also from the University of Sussex, explains: “It was most important to us to highlight the substantial technical challenges as well as to provide practical engineering solutions.”
As a next step, the team will construct a prototype quantum computer, based on this design, at the University.
The effort is part of the UK Government’s plan to develop quantum technologies towards industrial exploitation and makes use of a recent invention by the Sussex team to replace billions of laser beams required for quantum computing operations within a large-scale quantum computer with the simple application of voltages to a microchip.
Professor Hensinger said: “The availability of a universal quantum computer may have a fundamental impact on society as a whole. Without doubt it is still challenging to build a large-scale machine, but now is the time to translate academic excellence into actual application building on the UK’s strengths in this ground-breaking technology. I am very excited to work with industry and government to make this happen.”
The computer’s possibilities for solving, explaining or developing could be endless. However, its size will be anything but small. The machine is expected to fill a large building, consisting of sophisticated vacuum apparatus featuring integrated quantum computing silicon microchips that hold individual charged atoms (ions) using electric fields.
The blueprint to develop such computers has been made public to ensure scientists throughout the world can collaborate and further develop this brilliant, ground-breaking technology as well as to encourage industrial exploitation.
A short film about Professor Hensinger’s work can be found here. A popular science lecture given by Professor Hensinger explaining the principles of quantum computing can be found here.