Publications

Dr Matt Neale

Cooper, Tim J., Garcia, V., Neale, M. J.
Meiotic DSB Patterning: A multifaceted process
Cell Cycle 2016, Jan 5. doi: 10.1080/15384101.2015.1093709

Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ.
Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation.
Nature 2015, Jan 5. doi: 10.1038/nature13993

Cooper, Tim JWardell, KayleighGarcia, Valerie and Neale, Matthew J.
Homeostatic regulation of meiotic DSB formation by ATM/ATR.
Experimental Cell Research 2014, 329 (1). pp. 124-131. ISSN 1090-2422

Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM, et al.
DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities.
Mol Cell 2013, Dec 3;53(1):7-18.

Gray S, Allison RM, Garcia V, Goldman AS, Neale MJ.
Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase mec1(ATR).
Open Biol 2013;3(7):130019.

Garcia, V., Phelps, S. P., Gray, S. and M. J. Neale.
Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1.
Nature 2011; 144(5): 719-731.

Pan, J., M. Sasaki, R. Kniewel, H. Murakami, H. G. Blitzblau, S. E. Tischfield, X. Zhu, M. J. Neale, M. Jasin, N. D. Socci, A. Hochwagen, and S. Keeney.
A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation.
Cell 2011; 144(5): 719-731.

Neale, M. J.
PRDM9 points the zinc finger at meiotic recombination hotspots.
Genome Biology 2010; 11: 104.

Terentyev, Y., R. Johnson, M. J. Neale, M. Khisroon, A. Bishop-Bailey and A. S. H. Goldman.
Evidence that MEK1 positively promotes interhomologue double-strand break repair.
Nucleic Acids Research 2010; 38(13): 4349-4360.

Hartsuiker, E., M. J. Neale and A. M. Carr.
Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA.
Molecular Cell 2009; 33(1):117-123

Neale, M. J. and S. Keeney.
End-labelling and Analysis of Spo11-Oligonucleotide Complexes in Saccharomyces cerevisiae.
Methods in Molecular Biology 2009; 557:183-195.

Johnson, R., V. Borde, M. J. Neale, A. Bishop-Bailey, M. North, S. Harris, A. Nicolas and A. S. Goldman
Excess single-stranded DNA inhibits meiotic double-strand break repair.
PLoS Genet 2007; 3(11): e223 doi:10.1371/journal.pgen.0030223

Maleki, S., M. J. Neale, C. Arora, K. A. Henderson and S. Keeney
Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae.
Chromosoma 2007; 116(5): 471-86.

Neale, M. J. and S. Keeney
Clarifying the mechanics of DNA strand exchange in meiotic recombination.
Nature 2006; 442(7099): 153-8.

Keeney, S. and M. J. Neale
Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation.
Biochem Soc Trans. 2006; 34(Pt 4): 523-5.

Neale, M. J., J. Pan and S. Keeney
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.
Nature 2005; 436(7053): 1053-7.

Neale, M. J., M. Ramachandran, E. Trelles-Sticken, H. Scherthan and A. S. Goldman
Wild-type levels of Spo11-induced DSBs are required for normal single-strand resection during meiosis
Molecular Cell 2002; 9(4): 835-46.

Available from SRO: 

2024

  • Neale, M. (2024). Exploring the removal of Spo11 and topoisomerases from DNA breaks in S. cerevisiae by human Tyrosyl DNA Phosphodiesterase 2. DNA Repair, 142, pages. doi:10.1016/j.dnarep.2024.103757
    Article. View on figshare.
  • Wright, E. M., Schalbetter, S., & Neale, M. (2024). [Protocol] Hi-C2B: optimized detection of chromosomal contacts within synchronized meiotic S. cerevisiae cells. Methods in Molecular Biology, 2818, 45-63. doi:10.1007/978-1-0716-3906-1_3
    Article. View on figshare.
  • Brown, G., Gittens, W., Allison, R. M., Oliver, A., & Neale, M. (2024). [Protocol] CC-seq: nucleotide-resolution mapping of Spo11 DNA double-strand breaks in S. cerevisiae cells. Methods in Molecular Biology, 2818, 3-22. doi:10.1007/978-1-0716-3906-1_1
    Article. View on figshare.
  • Amoiridis, M., Verigos, J., Meaburn, K., Gittens, W., Ye, T., Neale, M. J., & Soutoglou, E. (2024). Inhibition of topoisomerase 2 catalytic activity impacts the integrity of heterochromatin and repetitive DNA and leads to interlinks between clustered repeats. Nature Communications, 15(1), pages. doi:10.1038/s41467-024-49816-7
    Article. View on figshare.
  • Neale, M., llorente, B., Legrand, S., Saifudeen, A., Bordelet, H., Vernerey, J., . . . Koszul, R. (2024). Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proceedings of the National Academy of Sciences of USA, 121(12), pages. doi:10.1073/pnas.2312820121
    Article. View on figshare.
  • Neale, M., llorente, B., Legrand, S., Saifudeen, A., Bordelet, H., Vernerey, J., . . . Koszul, R. (2024). Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proceedings of the National Academy of Sciences of USA, 121(12), pages. doi:10.1073/pnas.2312820121
    Article. View on figshare.
  • Neale, M., llorente, B., Legrand, S., Saifudeen, A., Bordelet, H., Vernerey, J., . . . Koszul, R. (2024). Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proceedings of the National Academy of Sciences of USA, 121(12), pages. doi:10.1073/pnas.2312820121
    Article. View on figshare.
  • Ruiz, L. M. L., Johnson, D., Gittens, W. H., Brown, G., Allison, R. M., & Neale, M. (n.d.). Meiotic prophase length modulates Tel1-dependent DNA double-strand break interference. PLoS Genetics, 20(3), pages. doi:10.1371/journal.pgen.1011140
    Article. View on figshare.
  • Milano, C. R., Ur, S. N., Gu, Y., Zhang, J., Allison, R., Brown, G., . . . Hochwagen, A. (n.d.). Chromatin binding by HORMAD proteins regulates meiotic recombination initiation. The EMBO Journal, 1-32. doi:10.1038/s44318-024-00034-3
    Article. View on figshare.

2023

  • Allison, R. M., Johnson, D. J., Neale, M. J., & Gray, S. (2023). Recombinase-independent chromosomal rearrangements between dispersed inverted repeats in Saccharomyces cerevisiae meiosis. Nucleic Acids Research, pages. doi:10.1093/nar/gkad650
    Article. View on figshare.
  • Amoiridis, M., Meaburn, K., Verigos, J., Gittens, W., Ye, T., Neale, M., & Soutoglou, E. (2023). Inhibition of Topoisomerase 2 catalytic activity impacts the integrity of heterochromatin and repetitive DNA and leads to interlinks between clustered repeats. doi:10.1101/2023.08.01.551420
    Preprint. View online.
  • Brown, G., Gittens, W., Allison, R., Oliver, A., & Neale, M. (2023). CC-seq: Nucleotide-resolution mapping of Spo11 DNA double-strand breaks in<i>S. cerevisiae</i>cells. doi:10.1101/2023.10.31.564935
    Preprint. View online.
  • Ruiz, L. M. L., Johnson, D., Gittens, W., Brown, G., Allison, R., & Neale, M. (2023). Meiotic prophase length modulates Tel1-dependent DNA double-strand break interference. doi:10.1101/2023.03.20.533494
    Preprint. View online.
  • Wright, E., Schalbetter, S., & Neale, M. (2023). Hi-C2B: Optimised detection of chromosomal contacts within synchronised meiotic<i>S. cerevisiae</i>cells. doi:10.1101/2023.11.21.565821
    Preprint. View online.

2022

  • Pandey, S., Hajikazemi, M., Zacheja, T., Schalbetter, S., Neale, M., Baxter, J., . . . Paeschke, K. (2022). Author Correction to: Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage (BMC Biology, (2021), 19, 1, (247), 10.1186/s12915-021-01167-1). BMC Biology, 20(1), pages. doi:10.1186/s12915-022-01237-y
    Article. View on figshare.

2021

  • Pandey, S., Hajikazemi, M., Zacheja, T., Schalbetter, S., Neale, M., Baxter, J., . . . Paeschke, K. (2021). Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biology, 19(1), pages. doi:10.1186/s12915-021-01167-1
    Article. View on figshare.
  • Johnson, D., Crawford, M., Cooper, T., Bouuaert, C. C., Keeney, S., Llorente, B., . . . Neale, M. (2021). Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature, 594, 572-576. doi:10.1038/s41586-021-03389-3
    Article. View on figshare.
  • Bergero, R., Ellis, P., Haerty, W., Larcombe, L., Macaulay, I., Mehta, T., . . . others. (2021). Meiosis and beyond – understanding the mechanistic and evolutionary processes shaping the germline genome. Biological Reviews, 96(3), 822-841. doi:10.1111/brv.12680
    Article. View on figshare.

2020

  • Paldi, F., Alver, B., Robertson, D., Schalbetter, S. A., Kerr, A., Kelly, D. A., . . . Marston, A. L. (2020). Convergent genes shape budding yeast pericentromeres. Nature, 582, 119-123. doi:10.1038/s41586-020-2244-6
    Article. View on figshare.

2019

  • Gittens, W., Johnson, D. J., Allison, R. M., Cooper, T., Thomas, H., & Neale, M. (2019). A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome. Nature Communications, 10, pages. doi:10.1038/s41467-019-12802-5
    Article. View on figshare.
  • Schalbetter, S. A., Fudenberg, G., Baxter, J., Pollard, K. S., & Neale, M. (n.d.). Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nature Communications, 10, pages. doi:10.1038/s41467-019-12629-0
    Article. View on figshare.
  • Paldi, F., Alver, B., Robertson, D., Schalbetter, S., Kerr, A., Kelly, D., . . . Marston, A. (2019). Convergent genes shape budding yeast pericentromeres. doi:10.1101/592782
    Article. View online.
  • Gittens, W., Johnson, D., Allison, R., Cooper, T., Thomas, H., & Neale, M. (2019). A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome. doi:10.1101/530667
    Preprint. View online.
  • Johnson, D., Crawford, M., Cooper, T., Bouuaert, C. C., Keeney, S., Llorente, B., . . . Neale, M. (2019). Concerted cutting by Spo11 illuminates DNA break mechanisms and initiates gap repair during meiosis. doi:10.1101/2019.12.18.881268
    Preprint. View online.
  • Johnson, D., Allison, R., Cannavo, E., Cejka, P., & Neale, M. (2019). Removal of Spo11 from meiotic DNA breaks<i>in vitro</i>but not<i>in vivo</i>by Tyrosyl DNA Phosphodiesterase 2. doi:10.1101/527333
    Preprint. View online.

2018

  • Cannavo, E., Johnson, D., Andres, S., Kissling, V., Reinert, J., Garcia, V., . . . Cejka, P. (n.d.). Regulatory control of DNA end resection by Sae2 phosphorylation. Nature Communications, 9, 4016 ( pages). doi:10.1038/s41467-018-06417-5
    Article. View on figshare.
  • Crawford, M., Cooper, T., Marsolier-Kergoat, M. -C., Llorente, B., & Neale, M. (2018). Separable roles of the DNA damage response kinase Mec1(ATR) and its activator Rad24(RAD17) within the regulation of meiotic recombination. doi:10.1101/496182
    Preprint. View online.
  • Cooper, T., Crawford, M., Hunt, L., Marsolier-Kergoat, M. -C., Llorente, B., & Neale, M. (2018). Mismatch repair disturbs meiotic class I crossover control. doi:10.1101/480418
    Preprint. View online.
  • Schalbetter, S., Fudenberg, G., Baxter, J., Pollard, K., & Neale, M. (2018). Principles of Meiotic Chromosome Assembly. doi:10.1101/442038
    Preprint. View online.

2016

  • Cooper, T., Garcia, V., & Neale, M. (2016). Meiotic DSB patterning: A multifaceted process. Cell Cycle, 15(1), 13-21. doi:10.1080/15384101.2015.1093709
    Article. View on figshare.

2015

  • Garcia, V., Gray, S., Allison, R. M., Cooper, T., & Neale, M. (2015). Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature, 520(7545), 114-118. doi:10.1038/nature13993
    Article. View on figshare.

2014

  • Cooper, T., Wardell, K., Garcia, V., & Neale, M. (2014). Homeostatic regulation of meiotic DSB formation by ATM/ATR. Experimental Cell Research, 329(1), 124-131. doi:10.1016/j.yexcr.2014.07.016
    Article. View on figshare.
  • Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. M., . . . Tainer, J. A. (2014). Erratum DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities. [Molecular Cell 53, 9, (2014) 7-18]. Molecular Cell, 53(2), 361. doi:10.1016/j.molcel.2014.01.008
    Article. View online.

2013

  • Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. -M., . . . Tainer, J. A. (2014). DNA double-strand break repair pathway shoice is directed by distinct MRE11 nuclease activities. Molecular Cell, 53(1), 7-18. doi:10.1016/j.molcel.2013.11.003
    Article. View on figshare.
  • Gray, S., Allison, R. M., Garcia, V., Goldman, A. S. H., & Neale, M. (2013). Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR). Open Biology, 3(7), 130019 ( pages). doi:10.1098/rsob.130019
    Article. View on figshare.

2011

  • Garcia, V., Phelps, S. E., Gray, S., & Neale, M. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature, 478(7369), 241-244. doi:10.1038/nature10515
    Article. View on figshare.
  • Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H. G., Tischfield, S. E., . . . Keeney, S. (2011). A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell, 114(5), 719-731. doi:10.1016/j.cell.2011.02.009
    Article. View on figshare.

2010

  • Terentyev, Y., Johnson, R., Neale, M. J., Khisroon, M., Bishop-Bailey, A., & Goldman, A. S. H. (2010). Evidence that MEK1 positively promotes interhomologue double-strand break repair. Nucleic Acids Research, 38(13), 4349-4360. doi:10.1093/nar/gkq137
    Article. View online.
  • Tarentyev, Y., Johnson, R., Neale, M., Khisroon, M., Bishop-Bailey, A., & Goldman, A. S. H. (2010). Evidence that MEK1 positively promotes interhomologue double-strand break repair. Nucleic Acids Research, 38(13), 4349-4360. doi:10.1093/nar/gkq13
    Article. View on figshare.
  • Neale, M. (2010). PRDM9 points the zinc finger at meiotic recombination hotspots. Genome Biology, 11(2), 104 ( pages).
    Article. View on figshare.

2009

  • Hartsuiker, E., Neale, M., & Carr, A. (2009). DistinctrRequirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound Topoisomerase I and II from DNA. Molecular Cell, 33(1), 117-123. doi:10.1016/j.molcel.2008.11.021
    Article. View on figshare.
  • Neale, M., & Keeney, S. (2009). End-labeling and analysis of Spo11-oligonucleotide complexes in Saccharomyces cerevisiae. Methods in Molecular Biology, 557, 183-195. doi:10.1007/978-1-59745-527-5_12
    Article. View on figshare.

2007

  • Johnson, R., Borde, V., Neale, M. J., Bishop-Bailey, A., North, M., Harris, S., . . . Goldman, A. S. H. (2007). Excess single-stranded DNA inhibits meiotic double-strand break repair. PLoS Genetics, 3(11), 2338-2349. doi:10.1371/journal.pgen.0030223
    Article. View online.
  • Johnson, R., Borde, V., Neale, M., Bishop-Bailey, A., North, M., Harris, S., . . . Goldman, A. S. H. (2007). Excess single-stranded DNA inhibits meiotic double-strand break repair. PLoS Genetics, 1-42. doi:10.1371/journal.pgen.0030223.eor
    Article. View on figshare.
  • Maleki, S., Neale, M., Arora, C., Henderson, K. A., & Keeney, S. (2007). Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae.. Chromosoma, 116(5), 471-486. doi:10.1007/s00412-007-0111-y
    Article. View on figshare.

2006

  • Keeney, S., & Neale, M. J. (2006). Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation. Biochemical Society Transactions, 34(4), 523-525. doi:10.1042/BST0340523
    Article. View online.
  • Neale, M., & Keeney, S. (2006). Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature, 442(7099), 153-158. doi:10.1038/nature04885
    Article. View on figshare.

2005

  • Neale, M., Pan, J., & Keeney, S. (2005). Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.. Nature, 436, 1053-1057. doi:10.1038/nature03872
    Article. View on figshare.

2002

  • Neale, M., Ramachandran, M., Trelles-Sticken, E., Scherthan, H., & Goldman, A. S. H. (2002). Wild-type levels of Spo11-induced DSBs are required for normal single-strand resection during meiosis. Molecular Cell, 9(4), 835-846. doi:10.1016/S1097-2765(02)00498-7
    Article. View on figshare.

Neale Lab publications with abstracts and links

PubMed