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Noise resilience of quantum information processing is a crucial precondition to reach the fault-
tolerance threshold. While resilience to many types of noise can be achieved through suitable
control schemes, resilience to amplitude noise seems to be elusive within the common harmonic
approximation for the bus mode of trapped ions. We show that weak an-harmonicities admit
control schemes that achieve amplitude noise-resilience consistent with state-of-the-art experimental
requirements, and that the required an-harmonicities can be achieved with current standards of
micro-structured traps or even the intrinsically an-harmonic Coulomb interaction.

Trapped ions are a leading candidate for the de-
velopment of practical hardware for quantum com-
putation. While proof of principle demonstrations
of quantum gates exist for a variety of platforms [1–
4], any practical device will require a certain level of
noise-resilience so that the benefits of using a quan-
tum instead of a classical computer are not lost to
the effort required for highly accurate and frequent
system calibration [5–8]. Existing demonstrations of
resilience of trapped-ion quantum gates against fluc-
tuations of a variety of quantities [9–15] put trapped
ion quantum information much closer to practicality
than many competing platforms.

By design, most of the currently employed quan-
tum gates are resilient to fluctuations in the ini-
tial state of the ions’ motion [2, 16, 17]. Resilience
against motional heating and fluctuations in the ions’
confining potential or carrier frequency of driving
fields used to realize gates can be achieved in term of
suitably tailored temporal shapes of the driving fields
[14, 15, 18–20]. A crucial system parameter that has
proven tricky to achieve noise resilience against is the
amplitude of driving fields; but typical fluctuations
in Rabi-frequency are in the range of a few percents.

The linear spatial dynamics of the ions is conflict-
ing with resilience against amplitude fluctuations of
driving fields. The required nonlinearity can be ob-
tained from the intrinsically nonlinear light-matter
interaction [21] beyond the Lamb-Dicke approxima-
tion. As we will show here, it is possible to achieve
resilience against amplitude fluctuations, without
the strong driving required for sizeable nonlinearity
in the light-matter interaction, using anharmonici-
ties in trapping potential or even the fundamentally
anharmonic Coulomb interaction. Even though such
anharmonicities impair resilience to thermal excita-
tions, they do so only to an extent that can be re-
claimed with the choice of temporal profile of the

driving fields. With the explicit design of gate elec-
trodes, we underpin the experimental feasibility of
the weakly anharmonic trapping potential required
for the present gate scheme.

The Hamiltonian of a pair of trapped ions with
off-resonant driving on a red and a blue sideband is
given by [16]

H(t) = H0 +ΩR

(
f(t)a† + af∗(t)

)
Sy , (1)

where Sy = σ1
y + σ2

y is the y–component of the to-

tal spin operator, a and a† are the annihilation and
creation operator of the bus mode; ΩR is the Rabi
frequency for the utilized side-band transitions, and
the function f(t) includes the time-dependence of the
carrier frequencies of the driving fields and any time-
dependence resultant from pulse shaping. H0 is the
non-interacting Hamiltonian of the internal, qubit
degrees of freedom of the ions and the bus mode.

In the case of a perfectly harmonic bus mode,
the impact of the non-interacting part H0 of the
system Hamiltonian reduces to an oscillatory time-
dependence of the annihilation and creation opera-
tors a and a†. The system Hamiltonian in the in-
teraction picture thus reads H̃(t) = ΩR(f̃(t)a

† +
af̃∗(t))Sy with a driving function f̃(t) dressed with
the time-dependence of the non-interacting dynam-
ics.

The gate dynamics can be represented by transla-
tion in phase space along a closed loop with length
proportional to ΩR [16, 17]. The Rabi-angle ΦR

of the effective S2
y–interaction in the dynamics in-

duced by H̃(t) is given by the area enclosed by
the loop, thus exhibiting the quadratic dependence

ΦR = Ω2
R Im

∫ T

0
dτ f̃(τ)

∫ τ

0
dτ ′f̃∗(τ ′) [18]. The de-

pendence of ΦR on the driving pattern factorizes
into an amplitude term Ω2

R and a factor with the
detailed time-dependence of the driving. There is

ar
X

iv
:2

40
7.

03
04

7v
1 

 [
qu

an
t-

ph
] 

 3
 J

ul
 2

02
4



2

thus no possibility of choosing driving patterns f(t)
that could modify the quadratic dependence on the
Rabi-frequency and any fluctuation of ΩR will un-
avoidably result in the corresponding fluctuation of
the Rabi-angle ΦR.
In the case of an anharmonic bus mode, however,

the interplay between the interaction and the non-
interacting dynamics can break this factorization,
and it is possible to achieve resilience against fluctu-
ations in the Rabi frequency ΩR in terms of suitably
tailored driving patterns f(t).
The ideal entangling gate for the qubit degrees of

freedom that can be realised with the Hamiltonian
H(t) (Eq. (1)) is given by

UT = exp
(
i
π

8
S2
y

)
. (2)

Since any level of anharmonicity will restrict a gate
functionality to a limited range of initial motional
states, it is essential to define a gate fidelity for the
joint dynamics V of qubits and bus mode that takes
into account this range. For any projector P onto a
subspace of the full Hilbert space of the bus mode,
one can define

F (V,UT , P ) =
∣∣∣tr((U†

T ⊗ P )V )/(4 trP )
∣∣∣2 , (3)

as the fidelity of a unitary V for the full system of
qubits and bus mode with respect to the desired gate
UT of the qubits and the desired trivial dynamics of
the bus mode within the subspace given by P . Re-
silience against amplitude fluctuations is character-
ized in terms of an averaged infidelity

I = 1− ⟨F (V (ΩR), UT , P )⟩ΩR
, (4)

where V (ΩR) is the system dynamics obtained for a
given Rabi frequency ΩR which varies in the error
range ΩC − δΩ ≤ ΩR ≤ ΩC + δΩ ,where ΩC is the
central value and δΩ the error magnitude.
Although the anharmonicity can be induced by

any higher order terms in the potential, for clar-
ity the remaining discussion focuses on the quar-
tic potential 1

2mω2
(
z2 + z4/ξ2

)
for the bus mode,

where ξ is the length scale on which the potential
becomes anharmonic. The perturbative correction
to the COM mode’s eigen-frequencies resultant from
the anharmonicity is given by χn(n − 1) with the
phonon number n and the scalar prefactor

χ =
3ℏ

4mξ2
(5)

referred to as the anharmonicity in the following.
Driving functions f(t) in Eq. (1) can be de-

signed with common pulse-shaping algorithms [22–
24] based on an ensemble of Hamiltonians of the form

of Eq. (1), with each ensemble member characterized
by its value of ΩR, but with all ensemble members
having the same driving function f(t). In the fol-
lowing, we will pursue such a numerically exact ap-
proach (given H(t) in Eq. (1)), and an approximate
analytic approach that is applicable to the regime
of strong anharmonicities. The latter approach pro-
vides an intuitive understanding of the functionality
of the control scheme, and using its driving functions
as initial condition for the iterative refinement of the
former approach helps to avoid sub-optimal extrema.

Fig. 1a depicts the infidelity 1−F (Eq. (3)) for sev-
eral gates as function of the Rabi frequeny ΩR. The
solid red curve corresponds to a perfectly harmonic
system in which no resilience can be achieved, and
the infidelity grows quickly with increasing deviation
|ΩR−ΩC | of the Rabi frequency from its ideal value.
The other two curves corresponds to an anharmonic
system, showing the fidelities obtained with driving
patterns optimized for an equally spaced grid of Rabi
frequencies in the interval [9/10 ΩC , 11/10 ΩC ] cen-
tered around the central Rabi frequency ΩC . The
pulses are optimised under the constraint |f(t)| ≤ 1.
The dotted blue refers to gate fidelities with no
phonon in the initial states, i.e., P = |0⟩⟨0| in Eq. (3),
for an anharmonicity χ = ΩG where ΩG = 2π/T
is the gate frequency with T the gate duration.
The dashed orange refers to the case with up to
10 phonons, P =

∑10
n=0 |n⟩⟨n|, and anharmonicity

χ = 10ΩG. The value of the gate frequency is cho-
sen to be ΩG = ΩC for the former gate; given the
broad range of initial states, the latter gate requires
a slightly lower gate frequeny ΩG = ΩC/2.6 in order
to achieve the resilience shown in Fig. 1a.

A more quantitative picture of the noise-resilience
is provided by the average infidelity I (Eq. (4)). Fig-
ures 1b and c depict I as function of the central
Rabi frequency ΩC and the anharmonicity χ for the
cases of 0 phonon and up to 10 phonons in the initial
states, respectively. Both insets show sub-optimal
infidelities for vanishing anharmonicity, as expected.
With increasing anharmonicity, however, the infi-
delities decrease and the threshold 10−4 is achieved
in the strong anharmonicity limit. This decrease
is faster in inset (c) than in inset (b), highlighting
that the required anharmonicity increases with the
dimension of the subspace to which its initial mo-
tional state is confined. While a Rabi frequency of
value ΩR = ΩG is enough to realize a fully entan-
gling gate in the absence of amplitude fluctuations,
Fig. 1 b and c also show that – depending on the de-
sired infidelity – slightly larger Rabi-frequencies can
be required in order to realize resilient gates. In par-
ticular, the required anharmonicity for achieving an
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FIG. 1: (a) Dependence of infidelity on Rabi frequency’s variation for the MS gate (solid red), anharmonic
gate with no phonon excitation (for χ = 2ΩG,ΩC = ΩG, dotted blue), and 10 phonon excitations (for

χ = 10ΩG,ΩR = 2.6ΩG, dashed orange); here ΩG = 2π/T is the gate frequency. (b) Infidelity averaged over
a 10% error range of the Rabi frequency for no phonon excitation and (c) up to 10 phonon excitations, as a

function of the anharmonicity and central Rabi frequency. The optimisation is terminated once the
infidelity drops below 10−4.

average fidelity of 99.9% rises linearly when the error
magnitude increases from 1% to 5%, but almost sat-
urates for error from 5% to 10% (Supp. Mat. Sec.
3).
In order to understand the physical origin of the

robustness against fluctuations in the Rabi frequency
ΩR, it is instructive to pursue an approximate treat-
ment that is valid for large anharmonicity, a regime,
in which a transition between any pair of Fock states
can be driven on resonance without sizeable off-
resonant transitions between other pairs. The re-
alization of a gate that works with an initial mo-
tional state in the subspace spanned by the lowest
N Fock states requires a driving profile with com-
ponents gn(t) close-to-resonant with the transition
between one pair of Fock states each (Eq. (S7) in
Supp. Mat.). With such a driving profile, the sys-
tem Hamiltonian in the interaction picture is approx-
imated (in rotating wave approximation) as

HI = ΩR

N∑
n=1

√
n
(
gn(t)σ

†
n + σng

∗
n(t)

)
Sy, (6)

with σn = |n− 1⟩⟨n|. The operators

Xn =
1

2
(σn+σ†

n)Sy , and Yn =
i

2
(σn−σ†

n)Sy (7a)

satisfy the commutation relation [Xn, Yn] = 2iZn

with

Zn =
1

4
[σ†

n, σn]S
2
y (7b)

and cyclic permutations (as S3
y = 4Sy) i.e. the same

commutation relations as the Pauli operators. The
dynamics with driving of a single transition is thus
equivalent to that of a single qubit.

If the dynamics V of qubit degrees of freedom and
bus mode satisfies the relation

V (1⊗ P ) = exp

(
−i

π

2

N∑
n=1

nZn

)
(1⊗ P ) , (8)

then the desired gate for initial motional states in
the subspace P =

∑N−1
n=0 |n⟩ ⟨n| is realised, and thus

the infidelity I (Eq. (3)) is minimized. Such dy-
namics can be realised in terms of a sequence of
steps in which a single transition is driven with a
driving function gn that is optimized for the tar-
get dynamics exp (−inπ/2Zn), or any other target
within 2π-periodicity. In fact, since the dynamics
resultant from driving profile gn(t) commutes with
the dynamics resultant from driving profile gm(t) for
|n−m| > 1, such a driving scheme can be comprised
of two steps only with gn = 0 for all even n in one
step, and gn = 0 for all odd n in the other step.

A possible choice for each of the driving func-
tions gn(t) that achieves the desired resilience to am-
plitude noise is given by the simple piecewise con-
stant driving function with four segments gj , for
(j − 1)T/4 ≤ t < jT/4 [25], with

g1 = g∗4 =
2πi√
nΩCT

exp

(
−i

3ϕ

4

)
,

g2 = g∗3 =
2πi√
nΩCT

exp

(
−i

ϕ

4

)
. (9)

This driving pattern for gn(t) results in the gate
exp(iϕZn) at the final time T given a central Rabi-
frequency with the value ΩC . Fluctuations in the
Rabi-frequency contribute only quadratically to the
gate angle and deviations from the type of gate (i.e.
induced by Zn) are of third order in Rabi-frequency
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a
b

FIG. 2: (a) The trajectories of the Bloch vector in
the strong anharmonicity limit with the analytic
pulse sequence of Eq. (9), for Rabi frequency

varying in a 10% error range. The color gradient
depicts temporal evolution from bright orange for
the initial vector [1, 0, 0] to dark red for the final

vector [−1, 0, 0]. (b) Similar trajectories for a finite
anharmonicity, χ = 2ΩG, and a 10% error range in
the Rabi frequency. The trajectories shown are

projections in the subspace of the lowest two levels,
thus residing inside the Bloch sphere.

fluctuations. That is, the gate is resilient to ampli-
tude fluctuations up to second order, resulting in a
robustness up to fourth order in the gate fidelity.

Fig. 2a depicts trajectories on the Bloch sphere
(defined in terms of X1, Y1 and Z1 for the dynam-
ics induced by the analytic pulse sequence in Eq. (9)
with ϕ = π/2. Trajectories for relative Rabi fre-
quencies ΩR/ΩC from 0.9 to 1.1 in steps of 0.025
are shown. The color gradient indicates the tempo-
ral evolution with bright orange for t = 0 to dark
red for t = T . The trajectories diverge at first due
to variation in the Rabi frequency, but converge to-
ward the end, demonstrating the robustness of the
gate.

Outside the regime of strong anharmonicity and
weak driving, the separation into dynamics in dis-
tinct two-dimensional subspaces breaks down. A
complete representation of the actual dynamics
would require an N2 − 1 dimensional generalized
Bloch vector. Yet, a three-dimensional projection of
this generalized Bloch vector can still provide partial
information. Fig. 2b shows the trajectories for such
a projection (onto X1, Y1 and Z1), with opacity rep-
resenting the length of the projected vector for the
dynamics resultant from numerically optimized driv-
ing for χ = 2ΩG. Due to the weaker anharmonicity
as compared to inset a, the trajectories deviate more
strongly during the dynamics, but they nicely refo-
cus towards the gate time.

The required anharmonicity in the present scheme
is on the order of 2π/T (see Supp. Mat. Sec. 3).

With a gate time of 1ms, an-harmonicities on the
order of χ ≃ 2π × 1kHz are sufficient to achieve re-
silience to amplitude fluctuations of a few quanti-
tative percents. For a typical trap frequency in the
range 2π×100kHz - 2π×1MHz, the coupling between
different motional modes resultant from the anhar-
monicity is well negligible, so that the reduction of
the motional dynamics to only the bus mode is well
justified [26]. For the COM mode, the anharmonic-
ity can be induced by a quartic potential in a trap
geometry where the DC control electrodes are placed
directly underneath the ions [27]. The anharmonic-
ity scales as the inverse of the square of the sepa-
ration between the electrodes and thus can be en-
hanced by reducing the size of the device [27]. How-
ever, it is more advantageous to use the stretch mode
to achieve the required anharmonicity as the intrin-
sic anharmonic Coulomb interaction can produce a
substantial anharmonicity even in a purely harmonic
potential. As discussed in more detail in Supp. Mat.
Sec. 1, anharmonicities around 2π×100Hz are read-
ily achievable via the intrinsic Coulomb interaction,
and values exceeding 2π×1kHz can be obtained with
the addition of a small quantitative quartic compo-
nent in the trap potential.

While they are discussed here for the specific plat-
form of trapped ions, both the problem of amplitude
fluctuations and the foundations of the presently
proposed solution are prevalent in many quantum
technological platforms: interactions between super-
conducting qubits for example can be mediated via
weakly anharmonic qubit couplers [28] and long-
range interactions are frequently realized via cou-
pling to a shared cavity mode [29–31]. With intrinsic
or engineered anharmonicities, all such systems can
benefit from the noise-resilience that can be achieved
with control techniques following the principles ex-
emplified here with the specific example of trapped
ions. The present techniques thus do not only help
to bring trapped ion technology closer to the error-
correction threshold, but they can find application
in a broad platform of emerging technologies.
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SUPPLEMENTARY MATERIALS

1. Anharmonicity estimation

Here we estimate the anharmonicty for the COM mode and the stretch mode in the quartic potential

V (z) =
mω2

2
(z2 + z4/ξ2). (S1)

For the COM mode, the effective potential is the same as that of a single trapped ion. The level shift is
estimated by perturbation theory mω2 ⟨n| z4 |n⟩ /2ξ2, giving (n2 + n)ℏχ where χ = 3ℏ/(4mξ2). We write
this as ℏ∆n + 2nℏχ where ∆n = (n2 − n)χ and group the second term into the harmonic part of the energy
spectrum, redefining ω as the transition between the shifted ground and first excited levels.

For the stretch mode the potential energy of the system is

V (z) =
ke2

2z
+mω2

(
z2 + z4/ξ2

)
, (S2)

where ±z are the axial positions of the two ions. The equilibrium separation is given by d0 = 2z0 where z0
is given by V ′(z0) = 0, which yields

− L l

2z20
+ 2

z0
l
+ 4

z30
ξ2l

= 0. (S3)

where l =
√
ℏ/mω is the harmonic oscillator length and L the range of the Coulomb interaction defined by

L = ke2/ℏω. This equation is solved numerically. Let ηz be the small displacement in the stretch mode, i.e.,
the positions of the ions are z = ±(z0 + ηz), we expand the potential V (z) up to the fourth order in ηz to
obtain

V (ηz)

ℏω
=

(
1 +

L l2

2z30
+

6z20
ξ2

)(ηz
l

)2
−
(
L l3

z40
− 4z0l

ξ2

)(ηz
l

)3
+

(
L l4

2z50
+

l2

ξ2

)(ηz
l

)4
. (S4)

As the total energy is mη̇2z + V (ηz), the effective potential for the motion of the stretch mode is Veff(ηz) =
V (ηz)/2. Using perturbation theory to estimate the anharmonic shift for this potential is not straightforward
as the second order contribution of the cubic term can dominate the first order contribution of the quartic
term. Therefore we compute the lowest three energies numerically with the Numerov method, and obtain
the anharmonicity shift by χ = (E2 − E1)− (E1 − E0).

Figure S1 shows the anharmonicity for two Yb+ ions with mass m = 171u in a potential with trapping
frequencies, ω/2π, varying from 0.1 to 10MHz and characteristic lengths, ξ, from 0.1 to 1000µm. There
are two distinct contributions to the anharmonicity: the intrinsic anharmonicity of the Coulomb potential
which increases with ω, and the external anharmonicity from the trapping potential which increases with
1/ξ2. In the purely harmonic limit where ξ is very large, anharmonicity χ ≃ 2π × 100Hz is achieved for
ω ≃ 2π× 5MHz. The required trap frequency can be reduced with an addition of a small quartic component
in the potential. In Fig. S2a we show the current design for one of our trap where the control voltage on
the electrodes can be configured to create a quartic component in the potential. Fig. S2b shows a potential
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FIG. S1: Dependence of the stretch mode’s anharmonicity on the trap frequency and the characteristic
length of the quartic potential.

𝜔 ≃ 2𝜋 × 100 kHz
𝜉 ≃ 2 𝜇m 

a b

FIG. S2: a) Geometry of a surface ion trap with control electrodes placed directly underneath the central
trapping axis, in between the RF electrodes (purple). Five different voltages are applied symmetrically to 9
control electrodes (cyan, orange, red, blue, green) to produce an axial potential with quadratic and quartic

terms at the ion location (black circle). The quartic component can be enhanced by reducing the
separations between the electrodes. b) Potential curve obtained with BEM simulation. The maximum

voltage on the electrodes (outside the range shown in the figure) is 70V.

obtained with BEM simulation. The trap frequency, ω ≃ 2π × 100Hz, and characteristic length, ξ ≃ 2µm,
of this potential correspond to an anharmonicity χ ≃ 2π× 1kHz. For comparison, the anharmonicity for the
COM mode in the same quartic potential is only 3ℏ/(4mξ2) ≃ 2π × 10Hz.

2. Hamiltonian in the strong anharmonicity limit

The control Hamiltonian in the rotating frame of the free spin terms and the harmonic motional term, is
then

H̃(t) ≈
∞∑

n=0

∆n |n⟩ ⟨n|+ΩR

[
f̃∗(t)a+ a†f̃(t)

]
Sy. (S5)

The interaction Hamiltonian in the rotating frame of
∑

n ∆n |n⟩ ⟨n| is

H̃1(t) ≈ΩR

∞∑
n=0

√
n
[
f̃∗(t)e−i(∆n−∆n−1)t |n− 1⟩⟨n|

+ |n⟩⟨n− 1| f̃(t)ei(∆n−∆n−1)t
]
Sy. (S6)
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In the strong anharmonicity limit where the anharmonicity is much larger than the Rabi frequency of the
drive, we consider a polychromatic control of the form

f̃(t) =

N−1∑
n=1

gn(t)e
−i(∆n−∆n−1)t, (S7)

where gn(t) are slowly varying on the time scale 1/(∆n − ∆n−1). The control Hamiltonian reads, after
neglecting the counter rotating terms,

H̃2(t) ≈ ΩR

N∑
n=1

√
n[gRn (t)Xn − gIn(t)Yn]Sy, (S8)

where gRn (t) and gIn(t) are the real and imaginary parts of gn(t).

3. Optimisation

We used piece-wise control signals so that the control variables are the set of amplitudes for each time
bin. We compute the fidelity and its gradient and optimise the fidelity using a gradient based optimisation
method. We start with the strong anharmonicity limit where we find the optimal gn, and use the solution in
Eq. (S7) as an initial guess to find the optimal f̃(t) for lower anharmonicity, for which the control Hamiltonian
is given in Eq. (S6).
The required anharmonicity for achieving a sufficiently low average infidelity in the error range increases

with increasing error magnitude. Figure S3 shows the minimum anharmonicity needed for achieving an
average infidelity below 10−3 for the cases of 0 phonon and 10 phonon excitations in the initial state. The
anharmonicity rises with the error magnitude as expected but almost saturates at 5%.
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FIG. S3: Required anharmonicity for achieving an average infidelity of 10−3 w.r.t. error magnitude.
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