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Abstract
A major obstacle in the way of practical quantum computing is achieving scalable and robust
high-fidelity entangling gates. To this end, quantum control has become an essential tool, as it
can make the entangling interaction resilient to sources of noise. Nevertheless, it may be
difficult to identify an appropriate quantum control technique for a particular need given the
breadth of work pertaining to robust entanglement. To this end, we attempt to consolidate the
literature by providing a non-exhaustive summary and critical analysis. The quantum control
methods are separated into two categories: schemes which extend the robustness to (i)
spin or (ii) motional decoherence. We choose to focus on extensions of the σx ⊗ σx

Mølmer–Sørensen interaction using microwaves and a static magnetic field gradient.
Nevertheless, some of the techniques discussed here can be relevant to other trapped ion
architectures or physical qubit implementations. Finally, we experimentally realize a
proof-of-concept interaction with simultaneous robustness to spin and motional decoherence
by combining several quantum control methods presented in this manuscript.

Keywords: robust entanglement, trapped ions, coherent control, dynamical decoupling

(Some figures may appear in colour only in the online journal)

1. Introduction

Trapped ions are a promising platform for quantum informa-
tion processing and have achieved the highest recorded fideli-
ties to date [1–7]. Nonetheless, these results were achieved
on smaller NISQ devices and scaling high fidelities to many
qubits in large processors remains an important challenge.
While quantum error correction alleviates this bottleneck, con-
sistent errors below the fault-tolerant threshold (10−2) are still
required [8]. More practical thresholds are placed near 10−3

and 10−4, since the number of physical qubits that encode a
single logical qubit scales with the infidelity. Surpassing the
fault-tolerant threshold is hindered by the qubit’s inevitable
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coupling to its noisy environment. Therefore, fault-tolerance is
partly a classical engineering challenge, since one can reduce
the noise via hardware improvement (e.g. low-noise electron-
ics or better shielding). In some cases, however, upgrading
the classical control hardware comes at a large manufactur-
ing cost and higher experimental overhead. Fortunately, one
can instead engineer quantum control methods to reduce the
qubit’s coupling to its noisy environment, usually at a smaller
cost of additional fields and modulations.

Quantum control methods for robust entangling gates are
prevalent in trapped ion platforms. Laser gates have already
demonstrated fidelities beyond the fault-tolerant threshold
[2, 4, 5, 9] and fast gate times [10]. Hybrid laser-microwave
schemes that make use of a single sideband transition and
continuous dynamical decoupling (CDD) achieve robustness
to thermal noise, dephasing and noise in the control fields
themselves [11–13]. Laser-free implementations have gained
traction due to scalability issues associated with laser beams.
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Near-field all-microwave approaches with oscillating mag-
netic field gradients [14] have also demonstrated high-fidelities
and added robustness using dynamical decoupling [15, 16].
Recent works with oscillating gradients have reported record
fidelities with laser-free σz ⊗ σz gates that are simultaneously
robust to spin and motional decoherence [3, 17, 18].

Another experimental implementation of laser-free gates
instead uses static magnetic field gradients, which offers
promising advantages when scaling up quantum processors
to many qubits [19]. This implementation is unique in that
a magnetically sensitive transition must be used in order to
obtain strong spin-motion coupling [20]. The interaction there-
fore naturally suffers from dephasing, since the encoded qubit
is linearly coupled to environmental noise. Entangling gates
must then rely on quantum control techniques to achieve high-
fidelities, whereas other trapped-ion platforms may use them
as an added feature. This immediately restricts the available
classes of quantum control methods that can be used, as they
must extend the coherence time by at least several orders of
magnitude.

There are several experimental demonstrations of all-
microwave entangling gates with a static magnetic field gra-
dient that use quantum control to improve the fidelity. For
example, a σz ⊗ σz gate was demonstrated with pulsed dynam-
ical decoupling to extend the spin’s coherence time [21–23].
It was also shown that CDD can be applied to this inter-
action to improve the robustness to spin decoherence while
preserving the resilience to motional errors [24]. Alternatively,
entanglement via a Mølmer–Sørensen type interaction has
been demonstrated by encoding the qubits in a decoherence-
free subspace via CDD [25, 26]. Along with these examples,
there exists a substantial library of quantum control schemes
which extend the robustness of entangling gates, each with
their own tradeoffs and advantages. This naturally leads to the
following question: is there a quantum control scheme that is
better suited for a particular experimental system and set of
requirements?

In this manuscript, we aim to consolidate the breadth of
quantum control methods that can be found in the literature
and offer a succinct summary and comparison. The follow-
ing sections attempt to provide a unifying framework which
allows us to compare schemes with common metrics. The
work presented here should be used as both an overview and a
guide towards selecting robust entangling schemes. The quan-
tum control methods are broadly separated in two categories:
section 2 discusses schemes that extend the robustness to spin
decoherence, while section 3 presents methods to extend the
motional robustness. Finally, in section 4, we demonstrate
an experimental proof-of-concept of an interaction that is
simultaneously robust to spin and motional decoherence, by
combining several of the aforementioned quantum control
protocols. Note that only schemes pertaining to laser-free
QCCD architectures with a static magnetic field gradient are
considered (such as the architecture proposed in reference
[19]). We further assume that the entangling gate is gener-
ated by a bichromatic σx ⊗ σx Mølmer–Sørensen interaction
[27, 28]. Nevertheless, the results of this manuscript can be

extended to a wider range of architectures and we hope that
the comparisons can be useful for other qubit hardware.

2. Robustness to spin dephasing

Spin dephasing arises from a qubit coupling to its noisy envi-
ronment. Common physical noise sources are, for example,
magnetic field fluctuations or phase noise in the local oscilla-
tor. While trapped ions can achieve long coherence times with
clock states [29], laser-free entanglement with a static mag-
netic field gradient necessitates a transition that is magnetically
sensitive to increase spin-motion coupling [20]. The coherence
time of these transitions are orders of magnitude smaller than
for a clock transition. Another challenge that is unique to the
magnetic gradient induced coupling scheme comes from the
use of the magnetic field gradient itself, which introduces a
new dephasing mechanism by coupling noisy electric fields
into magnetic fields [24]. For these reasons, greater care should
be taken to extend the spin’s coherence by either reducing the
hardware noise or by employing quantum control methods, the
latter of which is presented here.

Spin dephasing noise is described by the following Hamil-
tonian,

Hnoise = βz(t)σz. (1)

The stochastic variable βz(t) describes random fluctua-
tions of the qubit frequency. Provided that the noise is non-
Markovian, i.e. the power spectral density (PSD) Sz(ω) =∫ +∞
−∞ 〈βz(0)βz(τ )〉e−iωτdτ exhibits non-zero temporal correla-

tions, quantum control methods can be employed to dynam-
ically decouple the qubit from noise and extend the spin’s
coherence time. To this end, a Mølmer–Sørensen entangling
interaction can be made robust to spin decoherence. In the
following section, we discuss and compare three such quantum
control methods: (i) pulsed dynamical decoupling (PDD), in
which π-pulses are interleaved throughout the gate evolution;
(ii) continuous dynamical decoupling (CDD), where a carrier
transition is continuously driven; (iii) multi-level continuous
dynamical decoupling (MLCDD), where CDD is applied to
a multi-level system. These schemes are compared with one
another using the following metrics:

Fidelity: the fidelity achievable by a quantum control
method is arguably the most important metric. In what follows,
we use the decay function of the spin’s coherence as a proxy
for the infidelity [30],

I =
1
2

(1 − e−χ(τ )), (2)

where τ is the gate duration. In this way, the effectiveness of
a quantum control method in achieving high fidelity entan-
gling gates is linked with its ability to extend the spin’s
coherence. The decay function χ(t) is determined from the
system’s Hamiltonian. The PSD Sz(ω) can be encorporated
into equation (2) by using a filter function formalism: the
qubit acts like a filter whose transfer function in the frequency
domain is computed from the quantum control sequence
[31–34]. The decay function is then calculated from the over-
lap of the noise’s PSD with the filter transfer function F(ω, t),
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χ(t) =
1

2π

∫ +∞

−∞
Sz(ω)

F(ω, t)
ω2

dω. (3)

Since noise spectrums vary between experimental systems,
it is more useful to compare the quality of a quantum control
scheme’s filter function. In what follows, we therefore identify
the functional form of F(ω, t) for each scheme.

Gate duration: increasing the efficacy of a quantum con-
trol method often involves increasing the power of a dynamical
decoupling field or the number of pulses. In the case where
the given total power budget is constrained, this would imply
diverting power from the entangling gate fields, thus prolong-
ing the gate duration. It is therefore important to characterize
this trade-off between the efficacy of the dynamical decoupling
method and the achievable gate duration.

Robustness to static shifts: the qubit is subject to slow
parameter drifts which are modelled as a constant offset with
the replacement βz(t) → βz in equation (1). While the quan-
tum control methods under discussion efficiently decouple the
qubit from fast fluctuating noise (cf equation (3)), they also
make the qubit robust to these static qubit frequency missets.
In order to characterize the robustness, we aim to build an
empirical model for each quantum control method, depicting
the achievable fidelity for a given static shift.

Calibration requirements: while robustness can improve
the fidelity of an entangling gate in the presence of drifts,
experimental sequences are eventually required to recalibrate
the system’s parameters. The scheduling rate of calibrations
is determined by the tolerable reduction in fidelity over time.
The total calibration duration and the scheduling rate should
be kept small to maximize the continuous runtime of the
quantum processor [35]. Therefore, the duration of the cali-
bration sequences have a direct impact on the processor’s duty
cycle. This introduces a trade-off between a quantum control
method’s complexity and the processor’s available runtime.
We quantify this trade-off by representing the calibrations of
each scheme as a directed acyclic graph (DAG) [36], from
which the number of nodes and dependencies provide a proxy
for the calibration complexity and duration.

Experimental overhead: the final figure of merit is
the experimental overhead of a particular quantum control
scheme. This includes the required physical resources, the
general complexity of the scheme both conceptually and phys-
ically, and the stringency of hardware requirements. Since it is
difficult to find a common metric for the experimental over-
head, this figure of merit should serve as a summary of future
challenges that may arise when experimentally implementing
a particular scheme.

Without loss of generality, we consider qubits encoded in
the 2S1/2 ground state of 171Yb+ ions. The F = 1 hyperfine
triplet contains two magnetic sensitive states with magnetic
quantum numbers m f = ±1 and one clock state with m f = 0.
Spin-motion coupling with a static magnetic field gradient
requires a qubit encoded in a magnetic sensitive state [20].
Therefore, either of the |F = 0, m f = 0〉 → |F = 1, m f = ±1〉
microwave transitions (with σ± polarisations) separated by
approximately 12.6 GHz are suitable. Alternatively, one can
make use of the |F = 1, m f = 0〉 → |F = 1, m f = ±1〉 RF

transitions (polarisations of σ±) with frequency separations
on the order of 10 MHz. While the |F = 0, m f = 0〉 → |F =
1, m f = 0〉 clock transition (with polarisation π) does not
allow for sufficiently strong spin-motion coupling, it may be
preferable for idle operations or single qubit gates [19].

2.1. Pulsed dynamical decoupling

The first demonstrations of quantum control within the nuclear
magnetic resonance community extended the spin’s coherence
time via the application of π pulses [37, 38]. The seminal
Hahn spin echo consists of a single π-pulse at half the duration
τ/2, which refocusses qubit frequency fluctuations oscillating
at frequencies ω < 2/(τ ) [39]. It was later shown that inter-
leaving many π-pulses during the evolution may extend the
coherence time further [22, 40, 41]. It was also found that
performing pulses along alternating orthogonal bases could
efficiently decouple the qubit from noise in all three axes, and
similar techniques can mitigate the effects of imperfections in
the decoupling pulses themselves [42–45]. All together, this
vast library of pulse sequences form what we refer to as pulsed
dynamical decoupling (PDD).

PDD schemes may be used to extend the coherence of
spins during an entangling interaction. For example, π-pulses
interleaved during a σz ⊗ σz entangling gate have been shown
to suppress both static and time-varying qubit frequency
noise [3, 22, 23]. Alternatively, an entangling interaction
was demonstrated by only applying pulsed dynamical decou-
pling pulses to the carrier transition [46, 47]. Protecting a
Mølmer–Sørensen evolution in a similar manner is, however,
more difficult, as the dynamical decoupling pulses do not
necessarily commute with the gate fields. The nature of the
bichromatic interaction causes the spin and motion to remain
entangled throughout the evolution, further complicating the
timings of the π pulses. In what follows, we outline a vari-
ety of gate schemes that combine PDD with a σx ⊗ σx MS
interaction.

Earlier works assumed that adding π-pulses while the spin
and motion are still entangled will inevitably damage the
fidelity since they do not commute with the gate operation,
which affects the subsequent phase space trajectory (PST).
This led to the development of DD protocols in which refo-
cussing pulses are only applied when the spin and motion
are disentangled [48–51]. In practice, a k-loop MS gate is
implemented by choosing a detuning δ = 2

√
kεΩ0, with ε the

Lamb–Dicke parameter andΩ0 the gate fields’ Rabi frequency,
and π-pulses are added at the completion of each loop.

The PDD protocols can be made compatible with classical
digital circuitry by building the pulse timings as multiples of
a clock cycle [52–54]. The timings are encoded by Walsh
functions, which are a series of square pulses with values
{−1,+1}, where π-pulses are applied during zero-crossings.
These are complementary to a k-loop MS gate since the dura-
tion of a single loop can be viewed as a single clock cycle. The
maximum number of π pulses is then Nπ = k − 1. The gate
speed suffers by a reduction factor of

√
k, such that τ =

√
kτ0.

It is therefore difficult to implement a large number of pulses
due to the poor gate time scaling. Note that the application of a
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π-pulse when spin and motion are disentangled still alters the
resulting PST, usually causing a symmetry of the path about
the origin. This was found to also increase motional robustness
[49], and is further discussed in section 3.

There exist PDD sequences with more complex timings
that are difficult to encode with Walsh functions (e.g. Uhrig
[41]). Nevertheless, combining these sequences with the MS
interaction is in principle possible. The duration of a single
loop can be altered by varying the MS fields’ detuning and
Rabi frequency. One could therefore imagine a pulse sequence
that implements a k-loop MS gate with non-constant durations
which match the timings of the PDD pulses. The total entan-
gling phase picked up by all loops should then be identical to
that of a primitive Mølmer–Sørensen gate.

It was later shown that π-pulses can be applied at any
point in the MS evolution, even if the spin and motion remain
entangled [55]. A π-pulse effectively flips the sign of the
operators in the Mølmer–Sørensen unitary. In phase space, this
is equivalent to reversing the direction of the trajectory. The
timings of the pulses can therefore be engineered such that
fast reversals of the PST disentangle the spin and motion at the
gate time. The resulting trajectory traces out what is commonly
referred to as a flower, where a π-pulse is added at every
intersection of two petals (see reference [55] for a detailed
explanation). The duration between two pulses required to
implement a periodic PDD sequence is π(2 + Nπ)/Nπδ, where
Nπ are the number of π-pulses. For a given MS detuning δ, the
gate time is chosen such that the flower trajectory encloses an
area equal to the maximal entangling phase π/2. In the limit
of many π-pulses, the total required gate time is τ = π

2 τ0 [55].
The advantage of this scheme therefore comes from the gate
time scaling which is independent of the number of pulses and
allows for fast PDD gates (assuming instantaneous π-pulses;
see section 2.1.2 for a discussion on non-instantaneous pulses).
Note that the detuning of the gate fields, the π-pulse timings
and the gate duration can be optimized to implement com-
plex PDD sequences. This scheme also allows for dynamical
decoupling sequences with multi-axis pulses, such as the XY-4
or XY-8 schemes [56, 57].

2.1.1. Fidelity. As outlined in equations (2) and (3), the infi-
delity under PDD is estimated from the spin’s loss of coher-
ence. The filter function of an arbitrary sequence is [31]

FPDD(ω, τ ) =

∣∣∣∣1 + (−1)Nπ+1eiωτ

+ 2
Nπ∑
j=1

(−1) jeiδ jωτ cos(ωτπ/2)

∣∣∣∣
2

, (4)

where Nπ is the number of π-pulses, δ j are their normalized
timings and τπ is the duration of a single pulse. In gen-
eral, the PDD filter function corresponds to a high-pass filter,
whose low-frequency roll-off largely varies between specific
sequences, [32]. An efficient PDD sequence is one that results
in a steeper roll-off. Furthermore, the corner frequency of the
high-pass filter tends to increase with the number of pulses.

Figure 1. Numerical simulations of the Mølmer–Sørensen
entangling gate protected by pulsed dynamical decoupling and
subject to spin dephasing noise. The circles represent the simulated
infidelities averaged over 200 noise trajectories, in which qubit
frequency fluctuations of equation (1) are modelled as an
Orstein–Uhlenbeck process [12, 58, 59]. Solid lines are predictions
from the analytical infidelity models of equations (5) and (8).
(a) Infidelities due to qubit frequency fluctuations as a function of
the number of noise-free pulses Nπ . The coherence times T2 are
those of the magnetic sensitive transition, and are chosen such that
T2 = 2 ms is achievable on readily available systems, while
T2 = 12 ms can be obtained via additional noise shielding [29].
(b) Infidelities from pulse imperfections, where amplitude noise is
injected into the refocussing pulses and the MS evolution is made
noise-free. Relative amplitude noise levels were chosen from [60].

A large number Nπ is therefore desirable such that the stop-
band region of the filter function suppresses most of the noise.
The resulting infidelity from dephasing is, to first order,

I =
1

4π

∫ +∞

−∞
Sz(ω)

FPDD(ω, τ )
ω2

dω. (5)

We identify another source of infidelity arising from imper-
fections in the dynamical decoupling pulses themselves. This
error is evaluated by following a similar reasoning as in refer-
ence [56]. Because the pulse durations are generally fast with
respect to the qubit frequency fluctuations, i.e. τπ 	 T2, the
time-dependentnoiseβz(t) can be modelled as a constant offset
during rotations. The same argument is made for amplitude
fluctuations. In this way, all sources of noise are modelled as
constant shifts and the rotations become instantaneous uni-
taries with a static error in either the azimuthal Bloch sphere
angle or the rotation (polar) angle. The non-ideal π-pulse
operator is

Uk = exp
(
−i(π + εk)(S · 
n)

))
, (6)

where εk models over- and under-rotations, S are the Pauli
matrices and 
n = (nx, ny, nz) is the rotation axis. Only consid-
ering the dynamical decoupling pulses, the total rotation of N
pulses becomes

U =

N∏
i

Uki . (7)

4
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This final result can be used to evaluate the infidelity from
pulse imperfections,

I =
Tr(UU0)

Tr(U) Tr(U0)
, (8)

where U0 is the ideal error-free operator, obtained by setting
εk = 0, nx/y = nz = 0 and ny,x = 1.

An estimate of the total infidelity can be found from
equations (5) and (8). The accuracy of these results is verified
by numerically simulating the Mølmer–Sørensen interaction
under the influence of dephasing noise. The results, reported
in figure 1, show good agreement between predicted and sim-
ulated infidelities. A trade-off also becomes apparent: large
numbers of pulses Nπ are desired to more efficiently decouple
the qubit from low frequency noise, however this also leads to a
an increased accumulation of error due to pulse imperfections.

2.1.2. Gate duration. The shortest entangling duration that
makes use of PDD is achieved by the fast gate scheme of
reference [55], which applies π-pulses while spin and motion
remain entangled. The gate duration must be slightly pro-
longed given that the enclosed area in phase space is reduced.
We recall that, in the limit of many π-pulses, the primitive gate
duration τ 0 increases by a factor of π

2 . Along with the finite
π-pulse durations, the total gate duration becomes

τPDD =
π

2
τ0 + Nπτπ. (9)

We note that the duration of the fast PDD scheme can, in
principle be shortened by employing modulation techniques
which alter the PST (cf section 3.2.1). For example, instan-
taneous phase shifts in the bichromatic fields alters the MS
motional phase, which subsequently changes the direction of
the PST. By appending such a modulation to every π-pulse, the
PST could be engineered to maximize the enclosed area. If the
enclosed area corresponds to that of a primitive sequence, i.e.
a circle, the gate duration becomes

τPDD = τ0 + Nπτπ. (10)

This result places an additional trade-off on the number of
pulses Nπ . While many π-pulses are desired to improve the
filtering properties (cf equation (4)), this directly increases the
gate duration, making the interaction more sensitive to other
sources of noise, such as motional decoherence.

2.1.3. Robustness to static shifts. Robustness of the PDD
scheme to static qubit transition frequency shifts is investi-
gated by means of numerical simulations. The noise Hamil-
tonian (equation (1)) generalized to multiple ions is integrated
with the standard MS Hamiltonian after replacing the time-
dependent noise by a static shift δω. A periodic PDD sequence
is integrated by applying equally spaced π-pulses that are
error-free and instantaneous. Figure 2 reports the Bell state
fidelity for a range of pulse numbers Nπ and normalized detun-
ing errors δω/δ0, where δ0 is the MS detuning. An empirical
model of the robustness is constructed by fitting the contours

Figure 2. Robustness of the Mølmer–Sørensen entangling gate
protected by pulsed dynamical decoupling to static qubit frequency
shifts. The Bell state fidelities are numerically simulated for a range
of π-pulse numbers Nπ and normalised shifts δω/δ0. The dashed,
dotted and dash-dotted lines are contours corresponding to the
infidelities 10−4, 10−3 and 10−2.

of figure 2 to a linear function, and one finds

δω/δ0 �

⎧⎪⎨
⎪⎩

(2.8 + 3.2Nπ) × 10−2, I � 10−2,

(0.8 + Nπ) × 10−2, I � 10−3,

(0.3 + 0.3Nπ) × 10−2, I � 10−4.

(11)

The model of equation (11) estimates the tolerable qubit
frequency shift that still allows infidelities below a certain
threshold. For example, one can achieve infidelities below
10−3 despite a shift of δω = 0.108δ0 if Nπ = 10 pulses are
chosen. Alternatively, a larger shift of δω = 1.008δ0 is pos-
sible if one chooses Nπ = 100 pulses. For a gate duration of
τ 0 = 1 ms, this would correspond to δω/2π ≈ 1 kHz.

2.1.4. Calibration requirements. We here define a calibration
as the determination of a parameter by fitting the results of an
experiment. We note that more complex calibration techniques
exist based on Bayesian estimation [61] or machine learning
[62]. Nevertheless, we restrict ourselves to a simpler class
of calibrations for the sake of comparing quantum control
schemes.

The results of a calibration experiment may be skewed by
another parameter that is mis-calibrated. This introduces the
notion of dependency, i.e. some calibrations should precede
others. A calibration sequence is a collection of calibration
experiments that should be executed in a specific order to take
into account any possible dependencies of a gate scheme. In
this way, a calibration sequence can be modelled as a DAG,
wherein vertices (or nodes) designate a parameter and arcs
(edges) represent a dependency [36]. We also make the dis-
tinction between weak and strong dependencies. In the case of
a weak (strong) dependency, the child parameter’s calibration
is (in)valid despite a small misset in the parent vertex.

The PDD scheme necessitates three fields per ion: a pair of
sidebands for the bichromatic interaction and a single carrier
for dynamical decoupling. Each field is parameterized by a
transition frequency ω, a Rabi frequency Ω and a phase φ.
Calibrations of the field’s phases are not considered here,

5
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Figure 3. Directed acyclic graph describing the calibration
requirements of both the pulsed and continuous dynamical
decoupling schemes. The nodes represent parameters that need to be
calibrated, and vertices represent dependencies. Yellow (red) nodes
consist of transition frequencies (Rabi rates). Thin (thick) arrows
represent weak (strong) dependencies. Nodes within parentheses
indicate that this sub-graph should be repeated for every ith ion.

as typical microwave sources exhibit low phase drift and a
high resolution. The resulting DAG for the PDD scheme is
illustrated in figure 3. The graph contains calibrations for
the qubit transition frequency ω0, the bichromatic and car-
rier Rabi frequencies Ωr,b and Ωc, a possible stark shift δω0,
the MS detuning δ0 and finally the secular frequency ν. In
total, we identify 12 nodes, with 12 strong and 10 weak
dependencies.

2.1.5. Experimental overhead. To make use of the magnetic
gradient induced coupling scheme, we recall that the qubits
should be encoded in a magnetic sensitive transition [20]
(figure 4). Therefore, an MS gate with pulsed dynamical
decoupling can be performed on any of the |F = 0, m f = 0〉 →
|F = 1, m f = ±1〉 transitions, which requires all frequencies
to be centred around 12.6 GHz in a bandwidth of 10 MHz.
In this way, the PDD scheme can be implemented in an all
microwave approach. Since all interactions are performed on
the same hyperfine transition, only a single microwave polari-
sation of σ+ or σ− is required. Note that during idle memory
operations, it may be preferable to encode the qubit within
the magnetic insensitive clock transition. If this is the case, an
additional π-polarised field is required to map populations in
and out of the memory qubit before and after a gate operation.

Leakage to the nearest clock state transition, |F = 0, m f =
0〉 → |F = 1, m f = 0〉, may occur for larger microwave pow-
ers. Nevertheless, this transition is typically over 10 MHz
away, leading to negligible couplings. Furthermore, cross-talk
between ions in a magnetic field gradient is negligible [63].

In principle, the gate could be performed within the |F = 1〉
triplet states, i.e. on any of the |F = 1, m f = 0〉 → |F = 1,
m f = ±1〉 transitions. This would allow for an all RF entan-
gling gate. However, the frequency separations between both
transitions due to the second order Zeeman shift are on the

Figure 4. Quantum control scheme for PDD and CDD. Sideband
(carrier) fields are in blue (red). (a) Energy levels of a typical
hyperfine ground state. Ions have different resonance frequencies
due to the static magnetic field gradient. PDD and CDD fields must
address a magnetic sensitive transition between F = 0 and F = 1
(either of the opaque or transparent fields are possible). (b) and (c)
Pulse sequences for both schemes. In CDD (b), both sidebands and
carrier fields are continuously applied. In PDD (c), the carrier field
is interleaved throughout the evolution.

order of 10 kHz to 20 kHz. Off-resonant coupling of the carrier
and sideband transitions would therefore lead to appreciable
infidelities, making the all RF approach impractical.

2.2. Continuous dynamical decoupling

The previous section showed how a concatenation of π-pulses
can effectively decouple the qubit from spin dephasing noise
during a Mølmer–Sørensen evolution. An interesting case
arises in the limit of large pulse times, i.e. the dynamical
decoupling drive is continuously applied during the entangling
interaction. We refer to this as continuous dynamical decou-
pling (CDD). CDD has been shown to extend the coherence of
spins in numerous platforms [64–67]. Applying this dynam-
ical decoupling method to trapped ion entangling gates was
first proposed by utilizing a single red-sideband with a carrier
[11–13]. In this way, the interaction relies on the carrier for
both the dynamical decoupling and the entangling mechanism.
This same idea was applied to the standard MS scheme, such
that the interaction does not rely on the carrier drive, which
now only provides additional dynamical decoupling [16].

In order to elucidate the beneficial effects of the drive, we
consider the usual MS Hamiltonian along with a field resonant
with each qubit carrier transition and a noise term,

H = HMS + Hdrive + Hnoise (12)
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Hdrive =
h̄Ωc

2

∑
i

σ(i)
x (13)

Hnoise =
h̄βz(t)

2

∑
i

σ(i)
z . (14)

Provided that the basis of the drive is identical to that of
the MS interaction, Hdrive and HMS commute with one another.
Therefore, in an interaction basis with respect to the drive,
i.e. H̃ = eitHdrive/ h̄(H − Hdrive)e−itHdrive/ h̄, HMS is unaffected and
equation (12) becomes

H̃ = HMS + H̃noise, (15)

H̃noise =
h̄βz(t)

2

∑
i

[
cos(Ωct)σ(i)

z + sin(Ωct)σ(i)
y

]
. (16)

The addition of a resonant drive therefore continuously
rotates the qubit frequency noise βz(t) around the z and y
axes. The terms of H̃noise are neglected under a rotating wave
approximation in the limit βz(t) 	 Ωc. The drives decouple
the qubits from frequency fluctuations, and only noise at a
frequency nearing Ωc will decohere the spins. It is generally
beneficial to introduce a large carrier Rabi frequency to better
suppress qubit frequency fluctuations. We note that the inter-
action picture of the carrier drive must coincide with that of
the MS evolution at the completion of the entangling gate.
To this end, the carrier should perform an integer number of
rotations during the evolution, which places a constraint on its
Rabi freuqency, Ωc = 2πk/τ 0 where k ∈ Z

+.

2.2.1. Fidelity. The infidelity is estimated from the decay of
the spin’s coherence. From equations (2) and (3), we aim to
find a filter function for the continuous drive. In an interaction
picture with respect to Hnoise, dephasing noise is suppressed
by the energy gap that is opened in the new eigenstates. One
then expects a sinc-like filter function, which consists of a
narrow-bandwidth band-pass filter (see appendix D). This is
approximated by a Dirac delta function [67] and the infidelity
becomes, to first order,

I =
Sz(Ωc)τ

4
. (17)

An additional infidelity term arises when considering noise
in the dynamical decoupling carrier field itself. Amplitude
fluctuations introduce Rabi frequency noise, which is mod-
elled asΩcβx(t)σx , whereβx(t) is the fractional Rabi frequency
noise with PSD Sx(ω) =

∫ +∞
−∞ 〈βx(0)βx(τ )〉e−iωτdτ . The noise

amplitude therefore increases with Ωc, which limits the effi-
cacy of the dynamical decoupling and introduces a trade-off.
The infidelity from this additional noise is, from equation (2)

I =
Ω2

c

2π

∫ +∞

−∞
dωSx(ω)

Fx(ω, τ )
ω2

. (18)

With no further dynamical decoupling, the filter function
Fx(ω, t) coincides with that of a free induction decay (FID)
sequence, i.e. Fx(ω, t) = 2 sin2(ωt

2 ). A trade-off becomes
apparent from equations (17) and (18). A large carrier Rabi
frequency is desired to filter higher frequencies of noise which,

for a typical correlated noise spectrum, contain weaker powers
of noise. However, larger Rabi frequencies may increase the
infidelity term of equation (18). This places a practical limit on
the efficacy of CDD in the limit of larger Rabi frequencies. The
infidelities of equations (17) and (18) are verified by numer-
ically integrating the full Hamiltonian of equation (12). The
analytical model and simulation results show good agreement,
and further illustrate the trade-off in the choice of the carrier
Rabi frequency.

There exist various extensions to the CDD scheme that
make the filter function of equation (18) more efficient at
decoupling the spins from amplitude noise. A first scheme con-
sists in repeatedly adding dynamical decoupling drives with
decreasing powers [66]. The addition of a second drive effec-
tively opens a new energy gap which decouples the first drive’s
amplitude noise. In principle, any number of concatenated
drives can be implemented, each mitigating the noise intro-
duced by the previous one. A different approach uses continu-
ous phase modulation on the principle dynamical decoupling
carrier field [68, 69]. Similarly to the concatenated drives, this
also opens an additional energy gap which decouples the qubit
from amplitude noise. Alternatively, one can apply refocussing
pulses within the dressed eigenbasis to mitigate noise in the
drive itself [70].

While the previous methods of decoupling noise from the
drive itself are efficient, they each involve additional fields
or modulations which increase the complexity of the scheme.
An experimentally simpler solution consists of a rotary echo
sequence [71, 72]. Rotary echos are analogous to pulsed
dynamical decoupling, however refocussing occurs in a frame
rotating with the continuous drive. Instead of introducing π-
pulses, phase flips in the drive are applied throughout the
evolution. The filter function of equation (18) is then found
from the timings of the phase flips, and one can use those
derived in the context of PDD. The resulting infidelity model
is numerically verified in figure 6. We stipulate that mitigating
amplitude noise by means of rotary echos is more beneficial
than other methods that were mentioned, since phase flips do
not affect the power budget and are more straightforward to
implement experimentally.

A final infidelity source arises from the off-resonant cou-
pling of the carrier field to the motional states. An order of
magnitude estimate of the error is obtained from the excitation
probability of the carrier field in the bichromatic interaction
picture (see appendix E),

I =

(
1 +

ν4

Ω2
cΩ

2
0

)−1

, (19)

where ν is the motional frequency and Ω0 is the sideband
Rabi frequency. This interaction is suppressed by ensuring that
Ωc 	 ν. While large carrier Rabi frequencies are desired to
reduce the spin dephasing infidelity term of equation (17),
errors due to off-resonant coupling scale as ∝ Ω2

c and may
quickly deteriorate the fidelity. Nevertheless, reference [60]
shows that the infidelity term of equation (19) can be sup-
pressed by introducing a time-dependent phase modulation on
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all of the fields. The scheme can also be combined with rotary
echoes to mitigate imperfections in the carrier drive itself.

2.2.2. Gate duration. Since all participating fields are always
on, the total available power of the microwave synthesis chain
must be shared between several tones: the four MS sidebands
and the two dynamical decoupling carriers. This introduces a
trade-off in the choice of the carrier Rabi frequency, wherein
larger powers are desired to more efficiently decouple the qubit
from noise (cf equation (17)) but also take away power from
the gate fields, thereby reducing the gate speed. Assuming
a total power budget Ωmax = 4ΩMS + 2Ωc, the gate duration
suffers from a reduction of

τcdd =
Ωmax

Ωmax − 2Ωc
τ0. (20)

This result can directly be plugged into the previously
derived infidelities of equations (17)–(19) to find an optimal
carrier Rabi frequency Ωc. Note that this trade-off for CDD is
very similar to that of PDD, in that increasing the dynamical
decoupling quality by means of increasing the number of
π-pulses or the Rabi frequency leads to an increased gate
duration.

2.2.3. Robustness to static shifts. In an identical manner to
PDD (cf section 2.1.3), the robustness to static qubit fre-
quency shifts is investigated by numerically simulating the
Hamiltonian of equation (12) after replacing δβz(t) → δω (see
figure 7). The carrier Rabi frequency is parameterized by N =
Ωc/δ0, which represents the number of carrier oscillations
performed during the interaction. An empirical model is fitted
to the resulting infidelities,

δω/δ0 �

⎧⎪⎨
⎪⎩

0.22
√

N, I � 10−2,

0.13
√

N, I � 10−3,

0.07
√

N, I � 10−4.

(21)

This model allows one to estimate the largest tolerable qubit
frequency shift that still allows infidelities below a specific
threshold. For example, for a gate duration of τ 0 = 1 ms,
one could achieve infidelities below 10−3 for shifts of up to
δω/2π = 1.3 kHz with a carrier Rabi frequency Ωc/2π =
100 kHz, as opposed to δω/2π ≈ 1 kHz with Nπ = 100 pulses
using PDD (cf section 2.1.3).

2.2.4. Calibration requirements. Similarly to PDD, the CDD
scheme requires three fields per ion: two sideband fields driv-
ing the MS interaction and one carrier that is continuously
applied. Due to the static magnetic field gradient imparting
different transition frequencies to each qubit, a total of six
fields are required. The calibration DAG is identical to that
of the PDD scheme (cf figure 3); there are 12 nodes, with 10
strong dependencies and 8 weak dependencies.

2.2.5. Experimental overhead. The experimental require-
ments and overhead of the CDD scheme are identical to that
of the PDD scheme, and we refer the reader to section 2.1.5.

Figure 5. Numerical simulations of the Mølmer–Sørensen
entangling gate protected by continuous dynamical decoupling and
subject to spin dephasing noise. (a) and (b) as captioned in figure 1,
namely, numerical simulations used the exact Hamiltonian of
equation (12), while analytical fidelities were obtained from
equations (17) and (18). (a) Infidelities due to qubit frequency
fluctuations for varying carrier Rabi frequencies, parameterized by
the number of 2π pulse performed at the gate duration N = Ωc/δ0.
The dynamical decoupling field is noise-free. (b) Infidelities from
amplitude noise in the carrier dynamical decoupling fields, modelled
by the replacement Ωc → βx(t)Ωc, where βx(t) is an
Ornstein–Uhlenbeck process [12, 58, 59]. Here, dephasing noise is
ignored by setting βz(t) = 0.

Figure 6. Infidelities of the Mølmer–Sørensen entangling gate with
continuous dynamical decoupling due to amplitude noise in the
carrier field itself. A number of phase flips Npf are introduced in the
dynamical decoupling field to refocus noise by means of rotary
echoes. Circles are the result of numerical simulations (cf figure 5)
while solid lines are analytical predictions from equation (18).

2.3. Multi-level continuous dynamical decoupling

Both pulsed and CDD schemes made use of a simple two-level
system and encoded the qubit with a magnetically sensitive
transition. Furthermore, both schemes suffer from susceptibil-
ity to noise in the dynamical decoupling fields themselves.
One can instead make use of the multi-level structure that
naturally appears in hyperfine ground states and encode qubits
in a decoherence-free subspace. We refer to this approach
as multi-level continuous dynamical decoupling (MLCDD)
[24–26, 73–78]. Similarly to CDD, a pair of carrier fields are
continuously applied to drive two magnetically sensitive m f =

8
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Figure 7. Robustness of the Mølmer–Sørensen entangling gate
protected by continuous dynamical decoupling to static qubit
frequency shifts. The Bell state fidelities are numerically simulated
for a range of carrier Rabi frequencies Ωc and normalised shifts
δω/δ0, where δ0 is the MS detuning. The carrier Rabi frequency is
parameterized by N = Ωc/δ0, such that N represents the number of
2π carrier oscillations completed at the gate duration. The dashed,
dotted and dash-dotted lines are contours corresponding to the
infidelities 10−4, 10−3 and 10−2.

±1 states which we label | ± 1〉 (figure 8). The dynamical
decoupling Hamiltonian is, for σx drives,

Hdd =
∑

j

h̄Ωc

2

[
1√
2
|0〉( j)

(
〈−1|( j) + 〈+1|( j)

)
+ H.C.

]
. (22)

In the eigenbasis of these carriers, one finds the eigenstate
|D〉 = 1√

2

(
| − 1〉+ |+ 1〉

)
whose eigenenergy is degenerate

with the |0′〉 state. For this reason, the transition |0′〉 → |D〉 is
insensitive to noise in the dynamical decoupling drives them-
selves, and makes for an excellent qubit. To better understand
the dynamical decoupling interaction, one can consider noise
of the form

Hnoise =
h̄βz(t)

2

(
|+ 1〉〈+1| − | − 1〉〈−1|

)
, (23)

where we only include the first order Zeeman shifts of the
magnetically sensitive transitions, as this generally dominates
the infidelity. Transforming Hnoise in an interaction picture with
respect to Hdd, e−itHdd/ h̄HnoiseeitHdd/ h̄,

H̃noise =
δβz(t)

2
√

2

(
S+eitΩc/

√
2 + H.C.

)
. (24)

Here, the multi-level ladder operators S+ = |D〉〈d|+
|u〉〈D| and S− = |d〉〈D|+ |D〉〈u| describe transitions between
the eigenstates. The effects of the dynamical decoupling drive
are elucidated by equation (24), which shows that only noise
nearly resonant with the eigenstate splitting Ωc/

√
2 may drive

population out of the logical qubit state |D〉 and into spectator
states |u〉 and |d〉. Consequently, dephasing of the magnetic
sensitive states under the action of CDD results in an equal
distribution of population among the eigenstates, and a third of
the population remains in |D〉 at large durations. In the inter-
action picture with respect to the continuous drives, dephasing
therefore becomes analogous to a leakage error mechanism.

Figure 8. Required fields (a) and pulse sequence (b) for a MS
entangling gate that uses the multi-level continuous dynamical
decoupling scheme. The RF gate fields (blue) are near resonance
with a magnetic sensitive transition within the F = 1 manifold. The
microwave dynamical decoupling fields (red) bridge both magnetic
sensitive transitions between F = 0 and F = 1.

Finally, we note that transitions within the eigenstates are
slightly weaker by a factor of 1/

√
2.

Obtaining an MS type interaction within the dressed states
involves applying RF fields on either of the |0′〉 → | ± 1〉
transitions, and introducing a detuning equal to the motional
frequency. In this way, sideband transitions are driven on the
|0′〉 → |D〉 transition. Note that, due to the second order Zee-
man shift, both |0′〉 → | ± 1〉 transitions are resolvable and can
lead to transitions with the |D〉 state [74]. The full Hamiltonian
describing the bichromatic interaction is

Hrf =
∑

j

h̄Ωrf

2

(
|+ 1〉( j)〈0′|( j)e−iδrfteε j(a

†−a)

+ | − 1〉( j)〈0′|( j)ei(δrf−Δω±)te−ε j(a
†−a) + H.C.

)
, (25)

where δrf is the detuning from the carrier transition, ε j is the
Lamb–Dicke parameter and Δω± is the frequency splitting
between the |0′〉 → |+ 1〉 transitions that arises due to the
second order Zeeman shift. Moving Hrf into an interaction
picture with respect to Hdd of equation (22), and dropping
fast oscillating terms under a rotating wave approximation
in the limits εΩrf/2 	 Δω± and δ0 	 Ωc/

√
2 	 ν (where

δ0 = δrf − ν),

H̃rf = − εΩ0

2
(σ̃(1)

x − σ̃(2)
x )

(
aeiδ0 t − a†e−iδ0t

)
. (26)

This final Hamiltonian corresponds to the usual Mølmer–
Sørensen interaction, where σ̃(i)

x = |0′〉〈D| − |D〉〈0′| is the
modified Pauli operator, and Ω0 = Ωrf/

√
2 is the MS Rabi

frequency.

2.3.1. Fidelity. The decay function of the spin’s coherence
under MLCDD is slightly different than for PDD and CDD
(cf equation (2)). As outlined in the noise mechanism of
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Figure 9. Numerical simulations of the Mølmer–Sørensen
entangling gate protected by multi-level continuous dynamical
decoupling and subject to spin dephasing noise. See caption of
figure 1 for numerical simulation details, namely, the Hamiltonians
of equations (22), (23) and (25) were used. Analytical fidelities were
obtained from equation (28). Numerical simulations modelled both
an ideal (circles) and a noisy (crosses) dynamical decoupling carrier.

equation (24), dephasing causes population leakage into spec-
tator eigenstates. In the limit of large durations, the state
decoheres into an equal distribution of |D〉, |u〉 and |d〉. Taking
this into account, the modified infidelity from equation (2)
becomes

I =
1
3

(1 − e−χ(t)). (27)

The filter function of the MLCDD scheme is almost identi-
cal to that of CDD, i.e. the transfer function corresponds to a
sinc-like passband filter that can be approximated by a Dirac
delta function in the limit of small bandwidths (cf appendix D).
Conversely, the passband filter’s center frequency is Ωc/

√
2

instead of Ωc due to the different eigenenergies of the dressed
states. With these modifications, the infidelity due to dephasing
becomes, to first order,

I =
Sz(Ωc/

√
2)τ

12
. (28)

The interaction is protected from noise in the CDD
fields themselves, since the transition frequency of the qubit
{|0′〉, |D〉} is independent of the amplitude Ωc (figure 9).
Therefore, the MLCDD scheme does not have infidelity terms
originating from the drive’s noise. Nevertheless, the multiple
levels that are used in this scheme lead to several unwanted
transitions and parasitic couplings.

A dominant infidelity term of order Ω2
c/ν

2 appears from
the off-resonant coupling of the carrier fields to the motional
sidebands [76]. This term, however, oscillates at a frequency
ν, and can therefore be eliminated by carefully choosing the
gate time. This nevertheless requires a timing resolution that is
much smaller than 1/ν, and the interaction is more susceptible
to drifts of the motional mode frequency. Another similar
error term of order Ω2

0/ν
2 originates from the off-resonant

coupling of the MS fields to the carrier transitions. Never-
theless, amplitude pulse shaping can be used to adiabatically
drive transitions and reduce the timing sensitivity at the gate
duration [26].

Other higher order terms arise from the coupling of the
sideband fields to the carrier transitions, leading to population
leakage and unwanted energy shifts [24]. These terms can

be made vanishingly small by driving the carrier transitions
between the two qubits at different Rabi frequencies.

Finally, off-resonant coupling of the carriers to the motional
sidebands as well as coupling of the sideband fields to the
spectator’s motional states generate an MS type interaction
of strength Ω2

c/(2ν2 − Ω2
c). This interaction can nevertheless

be compensated for by appropriately adjusting the gate’s
duration.

2.3.2. Gate duration. The gate speed of the MLCDD scheme
is different from the PDD and CDD methods in that the
gate fields (RF) and dynamical decoupling fields (microwave)
originate from separate synthesis chains. Their power budgets
are therefore independent, and there is no longer a trade-
off between increasing the dynamical decoupling quality and
reducing the interaction strength. The gate duration is then

τMLCDD = τ0, (29)

where τ 0 is the duration of a primitive MS entangling gate after
replacing the usual Rabi frequency with Ω0 → Ωrf .

2.3.3. Robustness to static shifts. Previously, the robustness
of the PDD and CDD schemes were investigated by numer-
ically simulating a static shift in the carrier transition. This
reflects a robustness to both a magnetic field shift, as well
as an imperfect frequency in the control fields set by the
experimentalist. In the MLCDD scheme, however, these two
error sources do not coincide with the same robustness. On the
one hand, a change in the magnetic field will, to first order shift
the magnetic sensitive transitions by an equal and opposite
amount (cf equation (23)). On the other hand, a misset in the
frequency of the control field results in a detuning error with
the |0′〉 → |D〉 transition. The robustness to either, as will be
shown, is very different.

We first consider the robustness to a change in mag-
netic field by numerically simulating the Hamiltonians of
equations (22), (23) and (25) (after dropping terms rotating
withΔω±1 and ν) and performing the replacementβz(t) → δω.
The results are reported in figure 10 for a range of carrier
Rabi frequencies, where N = Ωc/δ0. An empirical model is
then constructed by fitting the linear portion of the contours
(N � 1),

δω/δ0 �

⎧⎪⎨
⎪⎩

−0.33 + 0.30N, I � 10−2,

−0.40 + 0.17N, I � 10−3,

−0.53 + 0.10N, I � 10−4.

(30)

The model of equation (30) suggests that the carrier dynam-
ical decoupling fields of the MLCDD are very efficient at
mitigating errors due to shifts in the magnetic field.

We now turn our attention to shifts in the control fields,
which is simulated by replacing the noise Hamiltonian of
equation (23) with Hnoise = δω/2(|D〉〈D| − |0′〉〈0′|). Note
that a shift of this nature could also occur from stark
shifts due to the sideband fields [26, 78]. With this new
definition of Hnoise, we effectively retrieve the robustness of a
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Figure 10. Robustness of the Mølmer–Sørensen entangling gate
protected by multi-level continuous dynamical decoupling to static
qubit frequency shifts. The Bell state fidelities are numerically
simulated for a range of carrier Rabi frequencies Ωc and normalised
shifts δω/δ0, where δ0 is the MS detuning. The carrier Rabi
frequency is parameterized by N = Ωc/δ0, such that N represents
the number of 2π carrier oscillations completed at the gate duration.
The dashed, dotted and dash-dotted lines are contours corresponding
to the infidelities 10−4, 10−3 and 10−2.

primitive Mølmer–Sørensen gate within a two-level system in
the absence of any dynamical decoupling,

δω/δ0 �

⎧⎪⎨
⎪⎩

2.8 × 10−2, I � 10−2,

0.9 × 10−2, I � 10−3,

0.3 × 10−2, I � 10−4.

(31)

The robustness demonstrated by equation (31) indicates
that the MLCDD scheme is much less forgiving to static
errors arising from imperfect experimental knowledge, e.g.
calibrations that are not precise enough or unaccounted stark
shifts. Furthermore, infidelities from these errors can not be
reduced by increasing the dynamical decoupling power.

2.3.4. Calibration requirements. The calibration require-
ments of the MLCDD scheme are determined from the corre-
sponding DAG (cf section 2.1.4). Four fields are required per
ion: a pair of sideband fields which drive the MS interaction
and a pair of carrier dynamical decoupling fields. The DAG,
illustrated in figure 11, contains nodes corresponding to the
frequencies and amplitudes of each of these fields. Additional
nodes are included to calibrate the |0〉 → |0′〉 clock transition
(ωclk and Ωclk), since it is required to map in and out of
the decoherence free subspace [77]. Each ion requires the
calibrations of the |0〉 → | ± 1〉 transition frequenciesω±1 and
amplitudesΩ±1, as well as the blue and red sideband Rabi rates
Ωr,b. One can then calibrate the qubit transition frequency ωD

and measure the stark shift δω0. The final nodes in the DAG are
the secular frequency ν and the MS detuning δ0. In total, the
DAG comprises of 22 parameters, with 20 strong dependencies
and 14 weak dependencies.

2.3.5. Experimental overhead. The MLCDD scheme
requires 2 MS sideband fields and 2 dynamical decoupling
drives per ion for a total of 8 fields. The carrier drives
should be resonant with the hyperfine |F = 0, m f = 0〉 →
|F = 1, m f = ±1〉 transitions, requiring near equal amounts

Figure 11. Directed acyclic graph describing the calibration
requirements of the multi-level continuous dynamical decoupling
scheme. Labels and caption identical to figure 3.

of σ+ and σ− polarization. The amplitudes of the carrier
fields within an ion should be identical in order to
maximize the coherence of the eigenstate |D〉 [79]. The
sideband fields should be detuned from either of the
|F = 1, m f = 0〉 → |F = 1, m f = ±1〉 transitions within the
|F = 1〉 triplet, requiring a single component of σ+ or σ−

polarization.
An additional microwave field resonant with the |F = 0,

m f = 0〉 → |F = 1, m f = 0〉 clock transition is required to
map population in and out of the computational sub-
space {|0′〉, |D〉} [25, 77], necessitating a component of π
polarization.

2.4. Summary

The performances of PDD, CDD and MLCDD are summa-
rized in table 1. We first note that the resilience of all three
schemes to spin dephasing is very similar. Within the filter
function framework, the transfer functions that are applied to
the noise’s PSD are akin to a narrow bandwidth passband filter.
The filter’s center frequency is proportional to the number of
π-pulses for PDD and the carrier Rabi frequency for CDD and
MLCDD. Increasing these parameters is desirable to displace
the bandpass filter to higher frequencies which, for a typical
correlated noise spectrum, contains lower powers of noise. The
filter functions of the pulsed and continuous schemes differ
slightly in that CDD and PDD implement a sinc-like function
that can be approximated by a Dirac delta, while the PDD
implements a high-pass filter, whose low-frequency roll-off is
highly dependent on the timings of the π pulses.

The PDD and CDD schemes have an additional source
of infidelity that arises from the dynamical decoupling fields
themselves. In the pulsed scheme, noise and imperfections in
theπ-pulses can be treated as static errors that accumulate with
the number of pulses. For the continuous scheme, amplitude
noise in the carrier may decohere the spins and increases
with the carrier Rabi frequency. In both cases, this introduces
a trade-off with the number of pulses (PDD) and the car-
rier Rabi frequency (CDD). Nevertheless, one can implement
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Table 1. Summary of the performances of pulsed dynamical decoupling (PDD), continuous dynamical decoupling (CDD) and multi-level
continuous dynamical decoupling (MLCDD). The various metrics are obtained from sections 2.1–2.3. The symbols and nomenclature are
explained throughout the main text. The infidelities are classified into dephasing errors, representing dephasing noise that is mitigated by the
dynamical decoupling scheme, and intrinsic errors, which consider noise arising from the scheme itself. The MLCDD scheme contains an
empirical robustness model for shifts arising from magnetic field changes, and for shifts due to errors in the control field’s frequency
(cf section 2.3.3). The calibration triplets represent {number of parameters, weak dependencies, strong dependencies}.

PDD CDD MLCDD

Infidelity:

Dephasing 1
2 (1 − e−χ(τ ,Nπ )) Sz(Ωc)τ

4
Sz(Ωc/

√
2τ

12

Intrinsic Tr(UU0)
Tr(U) Tr(U0)

Ω2
c

2π

∫ +∞
−∞ dωSx(ω) Fx(ω,τ )

ω2 Higher order terms

(1 + ν4

Ω2
cΩ

2
0

)−1

Gate time: τ 0 + Nπτπ
Ωmax

Ωmax−2Ωc
τ0, τ 0 (RF)

Robustness (%): B-field shift Control field shift

10−2 (2.8 + 3.2Nπ) × 10−2 0.22
√

N −0.33 + 0.3N 2.8 × 10−2

10−3 (0.8 + Nπ) × 10−2 0.13
√

N −0.40 + 0.17N 0.9 × 10−2

10−4 (0.3 + 0.3Nπ) × 10−2 0.07
√

N −0.53 + 0.10N 0.3 × 10−2

Calibrations : {12, 12, 10} {12, 12, 10} {22, 20, 14}

Experimental Req.

Number of fields 6 × MW 6 × MW 4 × MW and 4 × RF
Bandwidth 10 MHz 10 MHz MW: 50 MHz

RF: 10 MHz
Polarisation {π, σ+} or {π, σ−} {π, σ+} or {π, σ−} MW: {π, σ+, σ−}

RF: {σ+} or {σ−}

noise mitigation extensions such as pulses along alternating
axes for PDD and rotary echoes for CDD. In the case of the
MLCDD scheme, errors in the continuous drives do not lead
to infidelities by design. Furthermore, leading terms in the full
Hamiltonian suggest that larger carrier Rabi frequencies affect
the interaction by introducing static qubit frequency shifts and
modified interaction strengths, both of which can be corrected
for by calibrations. We therefore do not include an intrinsic
infidelity term, however precautions should be taken as higher
order terms that are analytically and numerically difficult to
analyse may lead to infidelities in certain parameter regimes.

The gate durations of the PDD and CDD scheme are sub-
ject to a similar trade-off, in that increasing the quality of
the dynamical decoupling leads to prolonged gate durations.
Along with the intrinsic infidelities appearing from noise
in the dynamical decoupling fields themselves, this offers a
more practical optimisation constraint. This additional trade-
off does not appear within the MLCDD scheme, since the
gate duration depends only on the MS field’s power which
originates from a different physical signal source to the carrier
dynamical decoupling fields.

The calibration requirements of the PDD and CDD scheme
are much lower than for MLCDD. This can be attributed to
the MLCDD schemes using multiple levels within the hyper-
fine ground state to encode a qubit, necessitating many more
calibrations for each transition. PDD and CDD however make

use of an approximate two-level system, greatly reducing the
number of parameters to be calibrated. A similar comment can
be made on the experimental implementation and overhead.
The added benefits of MLCDD come at the cost of a greater
experimental complexity. For example, one requires a synthe-
sis chain for both RF and microwaves, all types of polarization
and stringent requirements on the amplitudes between carrier
fields.

From the results of table 1 and from previous discussions,
it has hopefully become clear to the reader that there is not
one quantum control method which solves every experimental
problem, be it high fidelities or fast gates. On the contrary, each
gate scheme addresses a particular subset of a problem, while
introducing a new set of constraints and errors. It is therefore
important to characterize the various trade-offs to understand
the suitability of one scheme over another.

3. Robustness to motional decoherence

Motional decoherence encapsulates all mechanisms that deco-
here the common modes of motion of a trapped ion chain.
Since the Mølmer–Sørensen type entangling gates presented
in this manuscript use the motion as an information bus,
motional decoherence will inherently reduce their overall
fidelity. We identify three motional decoherence mechanisms:
motional heating, motional dephasing and thermal noise.
Motional heating involves a phonon gain and is caused by
the ion chain coupling to its environment. Motional dephasing
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is analogous to spin dephasing and describes frequency fluc-
tuations of the vibrational modes. Finally, thermal noise arises
from the intrinsic noise of ions in a thermal state. Note that
thermal noise in itself is not a source of infidelity, as the
Mølmer–Sørensen interaction is by design independent of
the initial thermal state of the ions. However, large temper-
atures increase the sensitivity of the fidelity to various other
parameters and inevitably result in a loss of fidelity.

There exists a variety of schemes that add robustness to
motional decoherence. The literature contains a vast amount
of work that theoretically and experimentally investigate these
schemes. It is not immediately clear, however, as to how
their motional dynamics differ from one another. In this
section, we consolidate the breadth of work pertaining to
motional robustness by introducing a unifying theoretical
framework. This allows us to clearly understand the advan-
tages of certain implementations and choose an optimal robust
scheme.

3.1. Robust phase space trajectories

Achieving robustness to motional decoherence amounts to
engineering efficient trajectories of the ion’s motion in phase
space. The PST has a start, an end and a time-dependent
position. Note that the phase space referred to here is similar
to that of a simple harmonic oscillator, for which the two-
dimensional space is defined by the position and momentum.
We will show that the robustness of a scheme is entirely
dependent on the path that is taken by the PST. In this way,
increasing the resilience of a scheme to motional decoher-
ence can be thought of as a geometric optimisation problem,
since it involves optimising a constrained two-dimensional
trajectory.

The PST of the kth motional mode that arises from a MS
interaction with a pair of ions is

αk(t) = εk

∫ t

0
dt′Ω(t′)eiδk (t′)te−iφ(t′), (32)

where εk is the Lamb–Dicke parameter. The Rabi frequency,
phase, and frequency are assumed to be equal for all ions
participating in the entangling operation (a valid assumption
for global microwave fields). If all parameters are time-
independent, equation (32) becomes αk(t) = iεΩ

2δ e−iφ(eiδt − 1),
which is the trajectory of a circle. For an arbitrary set of
parameters, the infidelity from imperfection in the PSTs is [80]

I = 1 −
∣∣∣∣∣
(∏

m

∏
n

cos(Φm,n −Ψm,n)

)

×
(

1 −
∑

k

∑
j

[
|αk(τ )|2

(
n̄k +

1
2

)])∣∣∣∣∣
2

, (33)

where n̄k is the average motional occupation. The first factor
multiplies over all pairs of ions (m, n) and evaluates errors
between the desired entangling phase Φm,n and the obtained
phaseΨm,n. Errors inΨm,n arise from deviations in the enclosed
area of the target mode, or parasitic phase accumulations of the
spectator motional modes. The second factor of equation (33)

captures infidelities from residual spin-motion coupling for all
modes k and ions j. If αk(τ ) = 0, this second infidelity term
reduces to zero, regardless of the mode’s temperature n̄k. This
further demonstrates the Mølmer–Sørensen gate’s robustness
to the ion chain’s temperature. However, if the PST does not
finish at the origin (αk(τ ) �= 0), larger n̄k amplify the infi-
delity term. This places a practical constraint on the maximal
temperature, since experimentally achieved PSTs are never
ideal. Furthermore, this leads to the first and most fundamental
requirement for the PSTs: the paths from all participating
motional modes must return to the origin at the gate time τ ,

Rend :=
∑

k

|αk(τ )|2 = 0. (34)

In the primitive Mølmer–Sørensen interaction, this is
ensured by carefully choosing the gate’s parameters, i.e. set-
ting δ0 = 2εΩ0 and τ = 2π/δ0.

3.1.1. Motional dephasing. We now turn our attention tow-
ards robustness to motional dephasing, and first focus on time-
independent static frequency shifts. This is modelled by adding
a small error to the detuning in equation (32), δk → δk + δ. The
PST’s sensitivity to motional frequency shifts is eliminated to
first order by setting ∂αk(τ )/∂δ = 0, and one finds [80, 81]

iταk(τ ) − i
∫ τ

0
dtαk(t) = 0. (35)

The α(τ ) of the first term evaluates to zero as it is fulfilled
by the requirement Rend of equation (34). The second term
describes the average position of the PST throughout the evo-
lution. The PST should therefore be designed such that this
term reduces to zero. The requirement for robustness to static
motional frequency offsets of the kth mode is then

Rdephasing :=αav =

∫ τ

0
dtαk(t) = 0. (36)

The primitive Mølmer–Sørensen interaction does not sat-
isfy Rdephasing as the average position described by the circular
PST is εΩ/2δ. This explains why the primitive gate is sensitive
to static and time-dependent motional frequency noise to first
order. It is also interesting to note that the requirements of
equations (34) and (36) can be simplified by only considering
PSTs that are symmetric about an axis. If this is the case,
fulfilling (36) will by definition satisfy (34).

Having provided a constraint for robustness to static errors,
we now show robustness to time-dependent fluctuations of the
motional frequency. We take a similar approach to II. and pro-
vide an expression for the infidelity within the filter function
framework. The noise under consideration can be modelled as
βδ(t)a

†a fluctuations with PSD Sδ(ω). The infidelity is [82]

I =
1

2π

∫ +∞

−∞
dωSδ(ω)Fδ(ω). (37)

The filter function is summed over all motional modes,
Fδ(ω) =

∑
k Fδ,k(ω). For the kth mode, the filter function

corresponding to a pair of ions m, n is
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Fδ,k(ω) =
Tk

4
(|ε(m)

k |2 + |ε(n)
k |2)|

×
∫ τ

0
dtΩ(t)ei(δk (t)−ω)te−iφ(t) t|2, (38)

where we have defined Tk = 2(n̄k +
1
2 ). Satisfying the robust-

ness condition of (36) will minimize the integral term of
equation (38) for small ω, thereby increasing the efficiency of
the filter function.

3.1.2. Motional heating. We here consider robustness to
motional heating. In phase space, one can think of heating
as random kicks which disturb the PST, preventing it from
returning to the origin. We can therefore put forth a qualitative
requirement and stipulate that the average distance from the
origin must be minimized to mitigate the effects of motional
heating. Quantitatively, the distance of the PST at any time
t is |αk(t)|2, and the time-averaged distance is 〈|αk(t)|2〉 =
1
τ

∫ τ

0 dt|αk(t)2|. In reference [83], this is placed on a firmer
footing and it is found that the best performance is obtained
when 〈|αk(t)|2〉 is minimized. This allows us to write the final
requirement for robustness to motional heating,

Rheating := min

(
1
τ

∫ τ

0
dt|αk(t)|2

)
. (39)

The average distance can be related to the heating rate
in order to provide a more useful metric of compari-
son. The system is first described with a master equation,
dρ/dt = −i[H, ρ] + L(ρ), where L(ρ) is a Lindbladian oper-
ator. Assuming the usual Lindblad heating operators [28, 83]
with a heating rate ˙̄n, the reduced density matrix becomes

d
dt
ρMy,M′

y
= −(My − M′

y)2 ˙̄n|α(t)|2ρMy,M′
y
, (40)

and after integrating over the gate duration and solving for ρ,

ρMy,M′
y
(τ ) = ρ0Exp

[
−(My − M′

y)
2 ˙̄n
∫ τ

0
dt|αk(t)|2

]
. (41)

Here, My and M′
y are eigenvalues of the Mølmer–Sørensen

spin operators. The infidelity associated with creating a max-
imally entangled Bell state is derived from equation (41), and
after setting

∫ τ

0 dt|αk(t)|2 = 〈|αk|2〉τ ,

I =
5
8
− 1

2
Exp[− ˙̄n〈|αk|2〉τ ] − 1

8
Exp[−4 ˙̄n〈|αk|2〉τ ]. (42)

Taking the first order Taylor expansion of equation (42), the
infidelity due to motional heating is approximated by

I = ˙̄n〈|αk|2〉τ. (43)

From equation (43), it becomes clear that minimizing the
average distance from the origin 〈|αk|2〉 will minimize the infi-
delity. For a primitive two-qubit Mølmer–Sørensen gate with
constant parameters, the average displacement is 〈|αk|2〉0 =
1/2. The infidelity therefore simplifies to I = ˙̄nτ/2. Alter-
natively, the heating rate may be replaced with an effective

heating rate such that

˙̄neff = ˙̄nRheat, Rheat =
〈|αk|2〉
〈|αk|2〉0

, (44)

and the infidelity becomes

I =
1
2
˙̄neffτ. (45)

Schemes which mitigate motional heating can therefore
be thought of as providing improvements to the heating rate
through a reduction factor Rheat. This provides a metric to
assess the quality of a robust PST. For all schemes discussed
in the following sections, decreasing Rheat comes at the cost
of decreasing the gate speed or increasing the sideband pow-
ers. In order to provide a useful comparison, the efficiency
of schemes are compared for fixed powers. It is therefore
useful to introduce a gate time scaling cost Rtime = τ/τ 0. An
efficient scheme is one that provides a low reduction factor
Rheat while keeping the time cost Rtime small. We introduce a
final scaled heating reduction factor, R̃heat = RheatRtime, such
that the infidelity of equation (45) becomes

I =
1
2
˙̄nR̃heatτ0. (46)

This final factor R̃heat more accurately represents the perfor-
mance and will prove useful for benchmarking schemes.

We have formulated robustness to motional decoherence as
a geometric problem in which one must engineer PSTs that
satisfy the following requirements: (i) the PST must end at the
origin at the completion of the gate (Rend), (ii) the average
displacement should be zero (Rdephasing) and (iii) one should
minimize the average distance to the origin (Rheating). Note that
if the PST is symmetric about an arbitrary axis, the requirement
of (i) is automatically satisfied by (ii). Symmetrization can
therefore alleviate constraints during numerical optimisations,
as well as reduce the total number of parameters. In the fol-
lowing sections, we discuss various methods that can engineer
an arbitrary PST.

3.2. Engineering a phase space trajectory

3.2.1. Sideband modulation. An arbitrary PST can be imple-
mented by modulating one or more of the parameters that
make up the path αk(t) of equation (32). Any combinations of
amplitude, phase and frequency modulation can be used, either
through continuous or piecewise constant functions [84–87].
The effects of an instantaneous change in the parameters
are illustrated in figure 12. Phase modulation (PM) rotates
the displacement vector, and the centres of rotation of the
subsequent PST are displaced. Frequency modulation (FM)
affects the curvature of the PST. Finally, amplitude modulation
(AM) varies both the curvature of the PST and the strength of
the interaction. The angular velocity of the PST is therefore
affected by changes in the amplitude.

Robust gates with AM were first demonstrated in [88] with
a five ion chain using laser beams. A microwave based AM
gate was later demonstrated in [89], where the amplitude was
assumed to have a sinusoidal envelope of order n such that
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Figure 12. Engineering phase space trajectories with phase,
frequency and amplitude modulation (PM, FM and AM). The PST
starts at the origin (full circle) and ends at the white circle. During
the first half of the evolution (blue), the sideband parameters are
kept constant. The phase (a), frequency (b) or amplitude (c) are
changed instantaneously and kept constant throughout the second
half (red). (a) A phase change instantaneoulsy changes the direction
of the PST, however the angular velocity and the radius of the arc
are preserved. (b) A change in frequency not only changes the
direction, but also the arc radius. (c) Amplitude modulation affects
both the angular velocity and the arc radius. The path length is
therefore smaller (or longer).

Ω(t) = Ω0 sinn(αt). The duration of a robust gate of order n =
2 is twice as long. AM gates have since been used to achieve
efficient, arbitrary, simultaneously entangling gates in large
trapped ion registers [90].

FM gates were first demonstrated with laser beams [81].
The frequency is modelled as a continuous sinusoidal oscilla-
tion with optimizable vertices. A similar sequence was adopted
in [91], where an additional slow sinusoidal ramp was applied
to the amplitude. Alternatively, a discrete sequence of equidis-
tant frequencies can be used for compatibility with direct
digital synthesis boards [92]. FM was also used to demon-
strate parallel entangling gates with arbitrary pairs of ions in a
long chain [93]. Finally, PSTs were made even more robust
via batched numerical optimizations [94], which was then
used to find optimal filter functions that efficiently suppress
a measured noise spectrum [95].

Following the initial proposal of reference [96], PM gates
have been demonstrated with laser beams [82]. A sequence
of up to (32) discrete phases demonstrated robustness to both
static and time-varying noise. PM was also used to achieve
global entangling gates in larger ion chains [97].

Robust modulated gates have been widely adopted across
a variety of trapped-ion architectures. The choice, however,
between employing AM, PM or FM gates largely depends on
the application. Furthermore, microwave and laser gates may
have different preferences. A first criterion is the scaling of
the gate time. For larger ion chains (N � 2), the total time of
AM and PM gates scales linearly with the distance between the
ion pair since non-neighbour interactions are weaker [86]. The
duration of FM gates, however, scales linearly with the length
of the ion chain. The different scalings lead to vastly different
performances for various algorithms within large chains and
it is therefore crucial to make the appropriate selection [86].
Nevertheless, in what follows we only consider small ion
chains that would be used within a QCCD type architecture,
such as the one considered in reference [19].

A variety of modulated sideband schemes were also devel-
oped with the aim of mitigating errors from off-resonant

coupling to other motional states. In laser-based architectures
with large strings of ions, the motional frequencies are spec-
trally crowded and spectator modes strongly interact with the
gate field. The modulation sequences are therefore designed
such that the total entangling phase from every contribut-
ing motional mode leads to maximal entanglement [82, 98].
Furthermore, the sequence ensures that all modes of vibra-
tion are decoupled from the spin states at the completion
of the gate. These restrictions can be alleviated in a laser
or microwave based QCCD architecture by restricting the
number of qubits present in a gate zone, thus limiting the
number of motional modes. Furthermore, typical Lamb–Dicke
parameters of global microwave fields are smaller than for
laser beams. Due to this weaker interaction, laser-free entan-
gling gates naturally lead to suppressed couplings to spectator
motional states. As an example, the resulting infidelity from
spectator mode coupling of a laser-free gate with a two-ion
chain is on the order of 10−4 to 10−6 (see appendix A).
For this reason, the sideband modulation schemes will only
be discussed in the context of improving robustness towards
motional decoherence. The additional constraint of managing
parasitic couplings to spectator modes is not an issue for the
architecture considered here, which grants more freedom in
designing efficient PSTs.

3.2.2. Multi-tone Mølmer–Sørensen gate. In the previous
section, it was shown that arbitrary PSTs can be engineered
by modulating the parameters of the sideband fields. Alter-
natively, one can keep the sideband fields constant and add
bichromatic tones of varying amplitudes, which also contribute
to the Mølmer–Sørensen interaction [78, 83, 99]. In this way,
an N tone gate involves 2N sideband fields per ion. The detun-
ing of the jth bichromatic fields are δ j = jδ0 and their ampli-
tudes are Ω j = c jΩ0. The real valued coefficients c j greatly
influence the dynamics of the interaction and are chosen to
implement robust sequences. The Hamiltonian describing an
N-tone Mølmer–Sørensen gate is (setting φ = 0)

H =
h̄εΩ0

2
Sx

N∑
j=1

c j(a†ei jδ0t + ae−i jδ0t), (47)

with Sx = σ(1)
x + σ(2)

x , and the PST is

αk(t) =
N∑

j=1

α j,k(t), (48)

where α j,k(t) is the displacement of the jth tone with Rabi
frequencyΩ j and detuning δ j. By choosing appropriate coeffi-
cients c j, an N-tone MS gate can implement robust PSTs. The
coefficients are first constrained by setting

∑
c2

j/ j = 1, which
is required to generate a maximally entangled state. The zero-
averaged position requirement of equation (36) (Rdephasing)
is further satisfied by setting

∑
c j/ j = 0. Finally, the quan-

tity
∑

c2
j/ j 2 should be minimized as per the requirement of

equation (39) (Rheating) which leads to gates that are robust
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Table 2. Optimal coefficients and performance of an N-tone Mølmer–Sørensen gate. The factors Rheat and Rtime are calculated from (49) and
(50) respectively. The time-scaled heating reduction factor is R̃heat = RheatRtime.

Tones c1 c2 c3 c4 c5 Rheat Rtime R̃heat

1 1 0 0 0 0 1 1 1
2 −1

√
3 2/

√
3 0 0 0 0.33 1.73 0.57

3 −0.132 −0.719 1.474 0 0 0.19 2.06 0.40
4 −0.06 −0.204 −0.804 1.74 0 0.14 2.4 0.33
5 −0.036 −0.104 −0.256 −0.872 1.972 0.11 2.66 0.28

to heating. The reduction factor of the heating rate that was
defined in equation (44) now becomes

Rheat =
˙̄neff

˙̄n
=

1
2

∑
j

c2
j

j 2 . (49)

An optimal set of coefficients are derived from the pre-
viously mentioned constraints, resulting in c j = 4 jb

1− jλ where

b = − 1
4 (
∑

j
j

(1− jλ)2 )−1/2 and
∑

j 1/(1 − jλ) = 0 [83].
It is also interesting to note the power requirements of

an N-tone gate. Given the close spectral proximity of the
tones (δ0) and the time-scale of the interaction (2π/δ0), addi-
tive and destructive interferences introduce a time-dependence
on the amplitude. The total signal is modelled as fN(t) =∑N

j c jei(ω+ jδ0)t, and the maximum amplitude of an N-tone
gate is max (| fN(t)|)t∈[0,τ ] [100]. Constraints on the maximum
amplitude of the physical fields arise from classical hardware
limitations. Therefore, the primitive Rabi frequency Ω0 of
a multi-tone gate should be adjusted, as both the amplitude
and gate duration are scaled by max(| fN(t)|). For example,
a two-tone gate involves two red (blue) sideband fields with
frequency separation δ0. The amplitude of the total signal is
| fN(t)| =

√
(5 − 4 cos(tδ0))/3, which is maximized at half

the gate duration where | fN(τ/2)| =
√

3. The peak ampli-
tude is therefore

√
3 times larger compared to a primitive

Mølmer–Sørensen gate and the gate duration and Rabi fre-
quency should be adjusted by τ →

√
3τ and Ω0 → Ω0/

√
3 to

satisfy the power requirements. The gate time scaling of an
N-tone gate is

Rtime = max (| fN(t)|)t∈[0,τ ]. (50)

The coefficients, heating and gate time scalings for up to
N = 5 tones are reported in table 2. For increasing numbers
of tones, Rheat decreases and leads to larger reductions of the
heating rate. For example, a five-tone gate leads to a tenfold
improvement. However, the time scalings also progressively
worsen, and the tenfold improvement comes at the cost of a
gate that is 2.66× slower. The time-scaled heating reduction
factors R̃heat are also reported. After considering the longer
gate duration, the tenfold improvement of a five-tone gate
reduces to a threefold reduction of the heating rate.

The multi-tone interaction has also been used for various
other interesting applications, which are not considered here.
For example, it was shown that adding multiple tones allows
one to operate the Mølmer–Sørensen interaction in the nona-
diabatic regime, effectively coupling all motional modes and
achieving high-fidelity gates within large ion crystals [101].

Alternatively, the amplitude coefficients can be numerically
optimized to increase the robustness of the interaction to
qubit frequency errors [100]. A multi-tone interaction was also
shown to permit strong-coupling entangling gates outside the
Lamb–Dicke regime [102].

3.2.3. Comparison. It was shown in section 3.1 that robust-
ness to motional decoherence is entirely dependent on the
PST, regardless of the physical implementation. Therefore,
if two schemes engineer the same trajectory, the expected
robustness is identical. An important difference, however, is
the gate time scalings, the physical resources of a scheme
and their experimental complexity. In what follows, these
factors are used to compare the sideband modulation schemes
(section 3.2.1) with the multi-tone Mølmer–Sørensen gate
(section 3.2.2).

While sideband modulation can engineer an arbitrary path
in phase space, the PST of multi-tone gates are fixed by the
optimized coefficients. The schemes are therefore compared
with one another by finding sideband modulation sequences
which implement an N-tone Mølmer–Sørensen gate. In this
way, the gate time scalings of the modulation schemes can
be compared to those reported in table 2. The modulation
sequences are found from numerical optimisations, which
are detailed in appendix B. The gate time scalings for each
scheme are reported in figure 13. We first notice that AM
is the least efficient as it results in the largest time scalings.
This is expected given that an AM sequence implements a
PST by modulating the gate speed with an upper bound being
Ωmax = Ω0. The FM and PM sequences have near identical
scalings given that they are equivalent (δ(t) = φ̇(t)). Since the
amplitude is kept at Ω0, the gate time cost is purely due to
the smaller area enclosed by the PST. Furthermore, the FM
and PM sequences perform better than an MTMS gate for any
number of tones. For example, the FM and PM sequences are
1.4× faster than a two-tone gate, with RFM

time = RPM
time = 1.23

and RMTMS
time = 1.73.

We now discuss the physical requirements and experimen-
tal complexity of the schemes. An MTMS gate requires 4N
additional fields (two sideband fields per ion for each tone
due to the static magnetic field gradient). The experimental
complexity quickly increases, as each new tone requires a
precise calibration of its amplitude. Conversely, the FM and
PM sequences do not introduce any additional fields, and are
implemented programatically with arbitrary waveform gener-
ators. Due to the high phase resolution, additional calibrations
are in principle not required. The FM and PM sequences
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Figure 13. Comparison of gate time scalings Rtime for a phase
modulated (PM), frequency modulated (FM), amplitude modulated
(AM) and multi-tone (MTMS) Mølmer–Sørensen gate. The
modulation sequences are chosen such that the resulting PST
implements an N-tone gate. The corresponding PSTs are plotted in
the insets.

differ when considering the functional forms of their modula-
tion. Robust PSTs engineered with PM use piecewise-constant
functions, while FM uses continuously varying functions.

We conclude that FM and PM are more efficient as they
lead to the smallest gate time scalings. Furthermore, their
experimental complexity is minimal compared to multi-tone
gates. In the following sections, only PM is considered as
it is conceptually simpler to work with piecewise constant
functions.

3.3. Optimal phase space trajectories

Robust PSTs suffer from a smaller enclosed area, hence a
prolonged gate duration is required for maximal entanglement.
It is interesting to explore this trade-off and characterize the
performances of optimal PSTs, i.e. trajectories which max-
imise the enclosed area for a given target robustness, thereby
minimising the gate time scaling. We first consider the robust-
ness to motional heating and build a model which, provided
a desired reduction factor Rheat, estimates the smallest gate
time scaling Rtime that is achievable from an optimised PM
sequence.

A library of PM sequences is created such that each result-
ing PST achieves a certain reduction factor Rheat. Each PM
sequence is the result of a numerical optimization which min-
imizes the scaling Rtime. In this way, the resulting PST for
a given Rheat corresponds to the fastest solution. In practice,
the numerical optimisation algorithm maximises the enclosed
area of the PST while constraining its average distance from
the centre. The optimisations are further constrained by ensur-
ing symmetry, closure and a zero-averaged position of the
PSTs (see the requirements detailed in section 3.1). The time
scalings Rtime are calculated by numerically simulating the
Mølmer–Sørensen Hamiltonian and minimising the resulting
infidelity. The heating reduction factors Rheat are then com-
puted from equation (44). The heating reduction factors and
time scalings of the resulting PM sequences are reported in
figure 14. Interestingly, the fastest PST which satisfies the

Figure 14. Trade-off between robustness to motional heating and
the gate duration. Each data point corresponds to a PST obtained by
a numerical optimisation algorithm. The enclosed area of the PSTs
are maximised, such that the gate time scaling Rtime is minimised.
The insets illustrate two examples of optimised PSTs. The
performance of a primitive Mølmer–Sørensen gate is included for
comparison. The scaled heating reduction factor R̃heat is represented
by each point’s color.

aforementioned constraints achieves a heating reduction of
Rheat = 0.4 with a time scaling Rtime = 1.2 (R̃heat = 0.48).
Conversely, the most robust PST that was simulated with
Rheat = 0.06 results in a time scaling Rtime = 3.3 (R̃heat = 0.2).

In order to model the trade-off between robustness and
time cost, the optimised PSTs are approximated by m circles
centred at the origin (see inset of figure 14). The average
distance is therefore constant and equal to the radius of the
circles r′ = (〈|α(t)|2〉)1/2. In order to accumulate a maximally
entangling phase, the area mπ(r′)2 enclosed by m circles must
be equal to that of a primitive Mølmer–Sørensen gate, i.e.
A0 = πr2

0 with r0 = 2
√

2. For an identical gate time, a PST
with a smaller average distance will enclose a smaller area,
however the length of its trajectory is conserved. Therefore,
the perimeter of the m circles must be equal to that of the
primitive PST, i.e.P0 = 2πr0 = m2πr′′. With these previously
defined relations, the theoretical gate time scaling is found
from Rtime = τ/τ0 =

√
A0/A where A = πr′′2,

Rtime = (2Rheat)−1/2. (51)

The theoretical time scalings are plotted alongside the
numerically optimised PSTs in figure 14 and show good
agreement. Deviations are attributed to the finite path length
that is required to join the PST to the origin. The model of
equation (51) is now combined with equation (46) to find the
infidelity for an optimal PST,

I =
1
2
˙̄n

√
Rheat

2
τ0. (52)

This infidelity model is validated by numerically integrat-
ing the Mølmer–Sørensen Hamiltonian with the optimized
PM sequences. Heating is integrated by incorporating the
usual Linbladian operators in the Master equation [28]. For
each PST, the gate time and detuning are adjusted with the
transformations τ → Rtimeτ and δ → δ/Rtime. The results are
reported in figure 15. The analytically predicted infidelities
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Figure 15. Infidelity of the Mølmer–Sørensen gate to motional
heating for various robust PSTs. Numerical simulations considered a
heating rate ˙̄n = 40 s−1, a Lamb–Dicke parameter ε = 0.01, and an
MS Rabi frequency Ω/2π = 40 kHz, resulting in a gate duration of
τ = 1.25 ms for a primitive PST (single loop). For robust schemes,
the gate duration in numerical simulations is scaled by Rtime. Theory
data points are calculated from 42 using the PST’s computed Rheat
and Rtime. The dotted line corresponds to this same infidelity term
after setting Rtime = 1, and therefore represents the infidelity if the
gate duration were kept constant. The dashed line is obtained from
the theoretical model of 52. Finally, the primitive PST
corresponding to a simple single-loop Mølmer–Sørensen gate is
plotted for reference.

are calculated from 46 by using the exact Rheat and Rtime.
Both simulation and predictions match well, which validates
the approach of modelling infidelities from purely geometric
properties of the PST. Furthermore, the idealized model of (52)
is plotted alongside the results and shows good agreement.
The infidelity model for robustness to heating can be incorpo-
rated into the spin robustness model derived in section 2 after
replacing τ → Rtimeτ .

Having investigated the efficacy of engineered PSTs at
mitigating heating errors, we now move our attention towards
imbalances in the Mølmer–Sørensen detuning. By design, the
PSTs are to first order insensitive to errors in the detuning (cf
Rdephasing of equation (36)). Therefore, the quality of a PST
at mitigating detuning errors is assessed from its quadratic
sensitivity,

∂2α(τ )
∂δ2

∣∣∣∣
δ=0

= −τ 2α(τ ) + 2ταav(τ ) − 2
∫ τ

0
dtαav(t), (53)

where we recall that the average displacement in phase space is
αav(t) =

∫ t
0dt′α(t′). The first two terms of equation (53) reduce

to zero for a robust sequence that satisfies the requirements of
equations (34) and (36). The last term, representing the time-
averaged mean position in phase space, is then used as a metric
of comparison.

To verify the robustness of PSTs to detuning errors,
equation (53) is evaluated for the two PSTs that are shown in
the insets of figure 14. The PST that is more robust to heating
is found to have a quadratic sensivitiy that is 3.7× smaller.
In general, one can make the assumption that robustness to
heating and detuning errors go hand in hand, since minimizing
the distance to the origin also reduces the time-averaged mean
position.

Figure 16. Numerically simulated infidelities of a primitive and
robust (CDD and PM) Mølmer–Sørensen entangling gate for cold
(top, n̄ = 0) and hot (bottom, n̄ = 5) initial temperatures. Their
robustness is characterized by introducing static frequency missets
in both the qubit frequency (δa) and motional mode frequency (δs).
The dashed (dash-dotted) lines represent infidelities of 10−4 (10−3).

3.4. Robustness to thermal noise

The Mølmer–Sørensen interaction is in principle insensitive
to the initial temperature of the modes of motion. From
equation (33), one can see that the infidelity is zero provided
that the PST returns to the origin. However, high temperatures
amplify small parameter missets, resulting in errors due to
non-closures of the PST [103]. Therefore, in realistic settings
where small parameter missets are present, higher tempera-
tures worsen the effects of experimental imperfections. Aside
from errors in the PST, thermal noise also amplifies infidelities
from qubit frequency missets such as those considered in
section 2.

The extensions of the bichromatic interaction (such as CDD
for spin robustness and PM for motional robustness) can be
used to obtain high fidelities in the presence of large tem-
peratures. These ‘hot’ gates may alleviate challenging experi-
mental requirements such as sideband cooling. The increased
robustness in the presence of thermal noise is reported in
figure 16. Both a primitive and robust entangling gate are
numerically simulated for hot (n̄ = 5) and cold (n̄ = 0) tem-
peratures. Here, the robust scheme consists of CDD with PM
on the sideband fields. In this way, the resulting interaction
is resilient to both spin and motional decoherence. One can
see that a hot robust gate achieves higher fidelities than a cold
primitive gate for similar parameter missets. This increased
robustness is expected to hold for higher temperatures, such as
ones found in ion strings that are only cooled to their Doppler
limit.

3.5. Outlook

The previous sections have identified extensions to the
Mølmer–Sørensen gate which provide robustness to both
spin and motional decoherence. While these can be used to
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independently increase the coherence of either internal or
external degrees of freedom, they can more importantly be
combined to provide simultaneous robustness. For example,
phase modulation of the sideband fields can be combined with
a CDD carrier field. A proof of concept demonstration of
this particular interaction is presented in section 4. Another
example of such combinations can be found in reference [60],
wherein the Mølmer–Sørensen interaction is subject to CDD
and additional π-pulses that lead to motional robustness.

More generally, the various quantum control schemes pre-
viously outlined make up a library of gate extensions that can
be combined with one another. The particular choice of which
schemes to use is then motivated by the desired performance
of an experimental system and its available hardware. For
example, if the fidelity of the entangling operation should
be maximized, one can build an error model from the infi-
delity terms derived in the previous sections and optimize over
parameters such as the gate duration or the dynamical decou-
pling Rabi frequency. Furthermore, the gate scheme library
may be constrained by factors such as the available polarisa-
tion of the microwave fields or their achievable bandwidth.

4. Experimental demonstration

Sections 2 and 3 outlined a number of quantum con-
trol schemes that extend the robustness of the primitive
Mølmer–Sørensen interaction to either spin or motional deco-
herence. In principle, multiple schemes can be combined to
enable a simultaneous robustness to both sources of error. For
example, one could extend the spin’s coherence via PDD,
while increasing the robustness to motional heating through
frequency modulation of the sideband fields (although extra
care should be taken in keeping track of additional phase
offsets introducing by the π-pulses).

Here, we experimentally demonstrate the construction of
a robust gate from a library of quantum control schemes by
combining continuous dynamical decoupling, rotary echoes
and sideband phase modulation. The single-ion equivalent of
the bichromatic Mølmer–Sørensen interaction is used as a
proof-of-concept experiment. The qubit is encoded within the
{|F = 0, m f = 0〉, |F = 1, m f = 1〉} states of the 2S1/2 hyper-
fine ground state of a 171Yb+ ion. All fields involved in the
interaction are in the microwave regime, with a frequency
nearing 12.64 GHz (see appendix C for further experimental
details). The pulse sequence is illustrated in figure 17. The
sideband fields are applied with a square pulse at a fixed Rabi
frequency Ω0. The phases of the red and blue sidebands, how-
ever, are subject to a discrete phase modulation sequence. The
amplitude of the dynamical decoupling carrier field is constant,
however phase flips are introduced after every sideband phase
change to implement rotary echoes.

4.1. Robustness to spin decoherence

The increased robustness to spin decoherence is first char-
acterized. In the absence of any dynamical decoupling, the
coherence time is measured to be T∗

2 = 358(8) μs via a FID
Ramsey experiment (see figure 18). The coherence time is

Figure 17. Pulse sequence for a Mølmer–Sørensen gate that is
simultaneously robust to spin and motional decoherence. Both the
sideband fields (Ω0, φm) and the carrier (Ωc, φc) are represented.
Phases are represented in red and amplitudes in blue. The motional
phase is modulated by a piecewise constant function. The sideband
Rabi frequency is kept constant throughout the gate interaction. The
carrier’s phase alternates between 0 and π, causing a change in the
sign of the carrier Rabi frequency. The frequency with which phase
flips occur are determined from the number of motional phase
modulation segments.

Figure 18. Coherence time measurement of a free induction decay
experiment (red) and continuous dynamical decoupling subject to
rotary echoes (blue). During continuous dynamical decoupling, only
the carrier field is applied and phase flips are introduced after every
2π rotations of the carrier. Dotted lines are fits to a Gaussian decay
of the form e−(t/T2)2 , which result in a coherence time of 358(8) μs
(22.6(3) ms) for the FID (CDD) sequence.

limited by magnetic field noise which couples to the magneti-
cally sensitive transition. Other measurements verified that the
leading contribution to the magnetic field noise was voltage
noise on the DC electrodes which couples to the qubit via the
static magnetic field gradient.

The robustness of CDD is investigated by adding a contin-
uous carrier field with a Rabi frequency Ωc/2π = 29.9 kHz
and omitting the MS sideband fields. The coherence time is
measured by a Ramsey-type sequence, where the wait time
is instead subject to the continuous application of the carrier
field. We find that this driven coherence time is on the order of
500 μs. Further experiments verified that decoherence during
driven evolution was dominated by amplitude noise in the car-
rier field itself. This noise is further mitigated by introducing
rotary echoes, i.e. phase flips which alternate the carrier Rabi
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frequency from Ωc to −Ωc and refocus amplitude fluctuations.
The phase flips are applied after every 2π rotation of the carrier,
i.e. with a period of 33.44 μs. The coherence time under
CDD with rotary echoes is finally measured via a Ramsey-type
experiment, resulting in T2 = 22.6(3) ms (see figure 18). CDD
therefore extends the spin’s coherence by almost two orders
of magnitude, despite significant noise in the carrier field
itself.

4.2. Robustness to motional decoherence

The robustness to motional decoherence is verified by cre-
ating a Schrödinger cat state. After initialisation of the
qubit, the bichromatic fields are applied and result in a state
dependent motional displacement, whose trajectory in phase
space is identical to that of a multi-qubit entangling gate.
For an initial state |↓〉 ⊗

∑
n p̄n(n)|n〉, where p̄n(n) is the

Maxwell–Boltzmann distribution, the probability of measur-
ing the | ↑〉 state is

P↑ =
1
2

(1 − e−2|α(t)|2(1+2n̄)). (54)

Under the correct Mølmer–Sørensen detuning, the PSTα(t)
returns to zero at the gate duration τ , and therefore P↑ = 0.
Errors such as parameter missets or motional decoherence
directly result in a non-zero spin probability. Therefore, the
robustness of the PST can be inferred from measurements
of P↑.

Robustness to motional decoherence is demonstrated by
comparing the probabilities resulting from a primitive bichro-
matic interaction to one with sideband PM. The sideband fields
are set to Ω0/2π = 30 kHz. The bichromatic detuning of the
primitive Mølmer–Sørensen interaction is δ0/2π = 321 Hz,
resulting in the gate duration τ = 3.12 ms. Note that at time
τ , the interaction picture of the bichromatic interaction and
the carrier fields must coincide. In other words, the carrier
dynamical decoupling field should have completed an integer
number of 2π rotations. This is satisfied by setting Ωc = Nδ0,
and the carrier Rabi rate was chosen such that N = 93. This
further constrains the efficiency of the rotary echoes, as one
can now only implement N = 93 phase flips on the carrier.

A robust PST is obtained via numerical optimizations [98]
and obeys all robustness conditions outlined in section 3.1.
The resulting gate time scaling is Rtime = 1.218. The modified
bichromatic detuning is δ′/2π = 264 Hz, with the gate dura-
tion τ ′ = 3.79 ms. This corresponds to a phase sequence of
N = 114 segments.

The primitive and robust interactions are compared in
figure 19. The fields are applied for a duration τ (τ ′) for the
primitive (robust) sequence and the bichromatic detuning is
varied from −2δ0 to 2δ0 (−2δ′0 to 2δ′0). The correct interaction
of the primitive (robust) sequence is obtained for δ = ±δ0

(δ = δ′0). It is interesting to note that the robust PST satisfies
all the requirements outlined in section 3.1: (i) the path is
symmetric about an axis, (ii) the average position is zero and
(iii) the average distance to the centre is smaller.

One can observe a difference spectroscopic behaviour
between both interactions around the required MS detuning.

Figure 19. Measurement probability of the ion being in the |↑〉 state
after the creation of Schrödinger cat states for varying bichromatic
detunings. The correct phase space trajectory is obtained for
detunings intersecting with the dotted line. Solid lines are analytical
predictions calculated from equation (54). (a) A primitive (blue) and
robust (red) sequence are considered. The PST of the latter is
constructed to obey all robustness requirements. (b) Phase
modulation sequences whose PSTs implement a cat (pink) and a
heart (purple). We wish to dedicate this heart-shaped PST and the
resulting measured state probability to Bruce W Shore whose
kindness and scientific genius enriched the field of coherent control
and scientists working in the field in numerous ways.

The primitive interaction exhibits a narrow region where the
measured population is zero, while the robust interaction
results in a flatter region. The latter is therefore more tolerant to
missets in the bichromatic detuning. This increased robustness
can be quantified by evaluating the PST’s first order sensi-
tivity to motional frequency errors (see section 3.1.1). From
numerical simulations, we find

∣∣ ∂α(τ )
∂δ

∣∣ = 7.8e − 4 (9.3e − 6)
for the primitive (robust) interaction, therefore the sensitivity
to unwanted frequency missets is reduced by a factor of 83.

While the spectroscopic behaviour around the correct
detuning provides some insight into the added robustness to
static frequency missets, the measured probability is an indi-
cation of the robustness to time-dependent frequency fluctua-
tions. In reference [82], it is shown that the resulting population
is an indirect measure of the overlap of the filter function with
the noise PSD (cf equation (38)). We verify that the robust
interaction results in a smaller state population, indicating an
increased resilience to motional dephasing.

An important advantage in using microwave radiation for
scalable quantum computing is the resolution and stability of
off-the-shelf components. Commercial microwave sources can
achieve very low amplitude and phase noise. Furthermore,
non-linearities in the synthesis chain are dominated by com-
ponents such as amplifiers, whose effects can be made small.
To demonstrate this ease of control, we experimentally create a
Schrödinger cat state by drawing out a cat trajectory in phase
space (see figure 19). Furthermore, considering the work of
reference [99], we take the literal sense of the PSTs dubbed
‘Cardioids’ and demonstrate a heart-shaped trajectory.

We wish to dedicate this heart-shaped PST and the resulting
measured state probability to Bruce W Shore whose kindness
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and scientific genius enriched the field of coherent control and
scientists working in the field in numerous ways.

5. Conclusion

The previous sections identified numerous quantum con-
trol methods that extend the robustness of the primitive
Mølmer–Sørensen entangling gate. Three classes of gate
schemes were first explored which add robustness to spin
decoherence: pulsed, continuous and multi-level CDD. For
each scheme, we characterized the trade-offs between the
fidelity and the gate duration, the robustness to static fre-
quency shifts, the added experimental complexity, and the
calibration requirements. It was found that pulsed and CDD
are very similar, and differ only slightly in their gate dura-
tion and fidelity. Multi-level CDD, however, results in a
supperior gate fidelity and duration at the cost of a higher
experimental overhead, additional fields, and more complex
calibrations.

Robustness to motional decoherence was found to be
entirely attributed to the motion’s path in phase space. There-
fore, quantum control methods which extend the robustness
to motional decoherence are schemes that enable an arbitrary
PST. The quality of a particular technique is then determined
from its trade-off with the prolonged gate duration. Phase and
frequency modulation of the sideband fields are found to be
the most efficient quantum control schemes, as they result in
the fastest gate for a given power budget.

The quantum control schemes presented in this manuscript
make up a library of tools that are available to the exper-
imentalist. The various control methods can be combined
with one another to obtain simultaneous robustness to mul-
tiple sources of decoherence. This is experimentally demon-
strated by combining CDD with sideband phase modu-
lation, achieving robustness to both spin and motional
decoherence.
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Appendix A. Infidelity from off-resonant coupling
to spectator motional states

Off-resonant excitation of spectator states is investigated by
calculating the expected infidelity from (33). The residual
displacement of the target mode is set to zero. An upper bound
is placed on the infidelity by considering the maximal residual
displacement of the spectator modes and setting |α j,k(τ )| →
max(|α j,p(t)|). Assuming that only the target mode is cooled
to its ground state, the motional temperature of the spectator
modes is taken from the Doppler cooling limit, n̄p = Γ/2νp

with Γ/2π = 19.6 MHz. We first consider a set of experi-
mental parameters corresponding to a smaller gradient with
∂zB = 25 T m−1, νz/2π = 220 kHz and Ω/2π = 30 kHz. For
a two-ion chain and a gate performed on the COM (STR)
mode, the expected infidelity is I ≈ 2e − 7 (2e − 5). Note
that errors from off-resonant coupling to the COM mode are
greater since the coupling strength is larger. Alternatively,
for a higher gradient with ∂zB = 150 T m−1, the resulting
COM (STR) infidelity is I ≈ 7e − 6 (7e − 4). The infidelities
are expected to grow for larger gradient strengths. Neverthe-
less, the expected fidelities reported here are well below the
fault-tolerant threshold and can be made arbitrarily small by
choosing an appropriate parameter regime (i.e. by increasing
the secular frequency or decreasing the magnetic field gradient
strength).

Appendix B. Modulation sequences
corresponding to a multi-tone MS gate

In section 3.2 of the main text, sideband modulation is com-
pared to multi-tone Mølmer–Sørensen gates with respect to
the gate time cost. That is, to obtain a robust phase space
trajectory (PST), the path inherently covers a smaller area
and there arises a trade-off with the gate time. In order to
compare the schemes with one another, we find a modula-
tion sequence for amplitude, phase and frequency modula-
tion that matches the PST of an N-tone gate. This appendix
presents the numerical methods as well as the obtained
sequences.

We define α(N )(t) as the PST of an N-tone gate. We are
therefore interested in finding a discrete sequence of Ωm, δm

or φm such that α(t) = α(N )(t). In what follows, an example
for finding a phase sequence φm is presented, however this
method is applicable to all types of modulation. We first
define a time chunk tchunk = tm+1 − tm much smaller than
the gate time, tchunk 	 τ 0. The initial position of the PST is
α(t = 0) = 0. The initial phase φ0 is found by minimizing
|α(tchunk,φ0) − α(N )(t)|. This also allows us to find the time
t0 at which both PSTs intersect. The process is repeated and
every mth step minimizes |α(mtchunk,φm) − α(N )(t)|, with the
condition that t > tm. A dictionary of phases φm is built until
the condition t > τ 0 is met. The gate time of the modulation
sequence is mtchunk, and the gate time scaling is therefore
mtchunk/τ 0.

The resulting sequences are plotted in figure 20. The noise
in the FM and AM parameters is due to the minimization step

21



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 204003 C H Valahu et al

Figure 20. Modulation sequences for PM (top), FM (middle) and
AM (bottom). The sequences are found numerically such that the
resulting PST corresponds to an N-tone gate. The black line in the
bottom plot corresponds to sin ( π2

τ
τ0

)2.

being done over a discrete sample. The sequences confirm that
FM and PM sequences are more efficient as they result in faster
gates for the same PSTs. This can be seen by examining the
AM sequence, where the Rabi frequency is only a fraction
of the total amplitude during the evolution. Since the AM
sequences achieve a PST by effectively changing the gate
speed, it is expected to result in less efficient gate times. An
interesting scenario arises from the AM sequence correspond-
ing to a two-tone gate. The time-dependent Rabi frequency
is well approximated by Ω(τ )/Ω0 = sin ( π2

τ
τ0

)2. This interest-
ingly corresponds to the analytical amplitude pulse shaping
derived in [89].

Appendix C. Experimental details

The qubit is encoded in one of two 171Yb+ ions that are
confined within a macroscopic segmented Paul trap. The mag-
netic field at the center of the trap is B0 = 7.4 × 10−4 T, and
the strength of the magnetic field gradient is 23.6(3) T m−1.
Doppler cooling, state preparation and state readout are
achieved via a 369 nm laser beam, however all coherent oper-
ations are performed using solely microwave and RF radia-
tion. Probabilities are inferred from photon counts collected
on a photo-multiplier tube and typical SPAM fidelities are
97%, which are corrected for with a maximum log-likelihood
method. The radial motional frequencies are ωx,y ≈ 1.6 MHz
and the axial center-of-mass frequency is 220.9 kHz. More
details on the experimental apparatus can be found in refer-
ences [104, 105].

The bichromatic fields are tuned closely to the axial stretch
mode of motion whose frequency is ν/2π = 382.6 kHz.
After doppler cooling, the stretch mode is further cooled
by means of sideband cooling, which brings the average
Fock state to n̄ = 0.18(4). The heating rate was measured
to be ˙̄n < 0.7 s−1. The motional coherence times under a
Ramsey and spin echo experiment are T∗

2 = 57(5) ms and
T2 = 0.99(22) s.

Figure 21. Filter functions corresponding to various dynamical
decoupling sequences: free induction decay (FID), spin echo (SE),
periodic dynamical decoupling (PDD) and Carr–Purcell–Mei-
boom–Gill (CPMG). The total duration is set to τ = 1 ms. The PDD
and CPMG sequences are implemented with 9 and 10 π-pulses
respectively.

Figure 22. Filter functions from a driven evolution, i.e. continuous
dynamical decoupling, where the Rabi frequency is set to
Ωc/2π = 30 kHz and the total duration is τ = 3.33 ms. (Top)
Amplitude filter function, which coincides with that of an FID, i.e. a
low pass filter with a characteristic cutoff frequency ω/2π = 1/τ =
300 Hz. (Bottom) Filter function for qubit frequency fluctuations.
The zoomed in inset (linear scale) shows that it is well approximated
by a sinc function centred at the carrier’s Rabi frequency.

Appendix D. Filter functions

As described in the main text, decoherence can be modelled
in frequency space by a noise source’s PSD that is subject to
a transfer function. In this way, the qubit is made to act like
a filter, whose filtering properties are directly computed from
the pulse sequence. We here present several filter functions
corresponding to the three classes of quantum control methods
that extend the robustness to spin decoherence: PDD, CDD and
MLCDD.

The filter functions of various PDD sequences are plotted in
figure 21. Under no dynamical decoupling, the qubit acts like
a lowpass filter and is generally affected by most of the noise
spectrum. The addition of π-pulses lowers the sensitivity of the
interaction to low frequency noise. Furthermore, pulse timings
such as those of CPMG [37, 38] result in a steeper roll-off than
for periodic PDD, leading to an increased robustness.

The filter functions under CDD and MLCDD, computed
from numerical simulations [98], are presented in figures 22
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Figure 23. Filter function corresponding to qubit frequency noise
for the dressed states, i.e. multi-level continuous dynamical
decoupling. The system is modelled with the Hamiltonian of
equation (22) of the main text, where Ωc/2π = 30 kHz, and noise is
included via equation (23). The inset shows that the filter function is
well approximated by a sinc function that is centred around Ωc/

√
2.

and 23. Both filters are well approximated by sinc functions
centred around their respective bandpass frequency. Further-
more, their bandwidths are sufficiently small to justify the
approximations of the filter functions by a Dirac-delta func-
tion in the main text. We also verify from figure 22 that the
primitive CDD scheme is not robust to amplitude noise in the
drive, as the filter function is that of a FID.

Appendix E. Carrier off-resonant coupling during
continuous dynamical decoupling

Continuous dynamical decoupling requires an additional con-
tinuous carrier field applied throughout the gate’s evolution.
Infidelities may arise from off-resonant coupling of this carrier
field to the motional sidebands. In this appendix, we derive
an approximate infidelity function for this error mechanism.
Note that the derivations closely follow those presented in
reference [60].

Let us first consider the system’s Hamiltonian describing
the usual Mølmer–Sørensen bichromatic field,

H = H0 + HMS + Hc,

H0 =
∑

j

h̄ω( j)
0

2
σ( j)

z + h̄νa†a,

HMS = h̄εν(a + a†)Sz,

(E1)

with Si = σ(1)
i + σ(2)

i . Considering an additional carrier field
and moving into an interaction picture with respect to H0,

H̃ = h̄εν(ae−iνt + a†eiνt)Sz) + h̄Ω0 cos(δt)Sx +
h̄Ωc

2
Sy,

(E2)

where Ω0 and δ are the Rabi frequency and detuning of the
bichromatic fields, and Ωc is the Rabi frequency of the carrier
dynamical decoupling drive. In the bichromatic interaction
picture rotating with h̄Ω0 cos(δt)(σ(1)

x + σ(2)
x ), equation (E2)

becomes

H̃ = h̄εν(ae−iνt + a†eiνt)

(
J0

(
2Ω0

δ

)
Sz + 2J1

(
2Ω0

δ

)
Sy

)

+
h̄Ωc

2

(
J0

(
2Ω0

δ

)
Sy − 2J1

(
2Ω0

δ

)
sin(δt)Sz

)
, (E3)

where Jn(x) are Bessel functions of the first kind. The last term
of equation describes off-resonant coupling of the carrier field
to the sidebands with a detuning δ and Rabi frequencyΩcΩ0/δ,
where we have used J1(x) ≈ x/2. Using the supplementary
material of reference [21], we approximate the infidelity by
the transition probability from off-resonant coupling to be

I =

(
1 +

δ4

Ω2
cΩ

2
0

)−1

, (E4)

which corresponds to equation (19) of the main text under the
assumption that δ ≈ ν
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