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ABSTRACT
The amplitude of density perturbations, for the currently-favoured �CDM cosmology, is con-
strained using the observed properties of galaxy clusters. The catalogue used is that of Ikebe
et al. The relation of cluster temperature to mass is obtained via N-body/hydrodynamical sim-
ulations including radiative cooling and pre-heating of cluster gas, which we have previously
shown to reproduce well the observed temperature–mass relation in the innermost parts of
clusters. We generate and compare mock catalogues via a Monte Carlo method, which allows
us to constrain the relation between X-ray temperature and luminosity, including its scatter,
simultaneously with cosmological parameters. We find a luminosity–temperature relation in
good agreement with the results of Ikebe et al., while for the matter power spectrum normaliza-
tion, we find σ 8 = 0.78+0.30

−0.06 at 95 per cent confidence for �0 = 0.35. Scaling to the Wilkinson
Microwave Anisotropy Probe central value of �0 = 0.27 would give a best-fitting value of
σ 8 � 0.9.

Key words: hydrodynamics – methods: N-body simulations – galaxies: clusters: general –
X-rays: galaxies: clusters.

1 I N T RO D U C T I O N

It has recently become apparent that traditional hydrodynamical
simulations, where the gas is only allowed to heat adiabatically
and through shocks, have difficulties in matching observations in
the central regions of clusters, with a significant underestimation
of the temperature corresponding to a given cluster mass. This is
potentially important for attempts to use the observed temperature
function of clusters to constrain the matter power spectrum on short
scales, a topic which has been studied by many authors over the
years (Evrard 1989; Henry & Arnaud 1991; Oukbir & Blanchard
1992; White, Efstathiou & Frenk 1993a; Eke, Cole & Frenk 1996;
Viana & Liddle 1996; Viana & Liddle 1999, hereafter VL99; Henry
1997, 2000; Blanchard et al. 2000; Pierpaoli, Scott & White 2001;
Wu 2001), most of whom use hydrodynamical simulations to re-
late mass to temperature. Such concerns have been given further
impetus by a recent paper by Seljak (2002), who used an observed
relationship between cluster temperature and mass (Finoguenov,
Reiprich & Böhringer 2001), rather than one derived from hydro-
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dynamical simulations, to find a normalization for the matter power
spectrum significantly lower than that of earlier works. In a recent
paper (Thomas et al. 2002) we have shown that the inclusion of extra
gas physics, namely radiative cooling of the gas and possible pre-
heating of the gas before cluster formation, can bring simulations
into good agreement with recent Chandra observations of the cores
of clusters (Allen, Schmidt & Fabian 2001), suggesting that these
may be crucial ingredients in obtaining an accurate description of
clusters.

In this paper, we derive a constraint on the matter power spectrum
normalization σ 8 in a way which improves on previous work in sev-
eral ways. On the theoretical side, we incorporate the temperature–
mass relationship, and its scatter, as obtained from the simulations
described above. On the observational side, we compare with the
data published in Ikebe et al. (2002), whose raw catalogue contains
around 100 clusters, most with data from both ROSAT and ASCA.
Finally, on the data analysis side we use a novel approach, whereby
Monte Carlo simulations are used to generate mock galaxy cluster
catalogues, which through comparison with the data published in
Ikebe et al. (2002) lead to a simultaneous constraint on the relation-
ship of X-ray temperature to luminosity, including its scatter, and
on the matter power spectrum normalization σ 8.
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2 T H E O B S E RV E D C L U S T E R C ATA L O G U E

The galaxy cluster catalogue containing the best available X-ray data
is that compiled by Ikebe et al. (2002) and Reiprich & Böhringer
(2002). The master catalogue contains 106 clusters, selected by their
X-ray ROSAT flux from available cluster catalogues, with 88 among
them having been observed by ASCA. Imposing a flux cut in the
ROSAT [0.1, 2.4] keV band of 2.0 × 10−11 erg s−1 cm−2, a flux-
limited sample of 63 clusters is then obtained, called HIFLUGCS,
which is claimed to be statistically complete (Reiprich & Böhringer
2002). Ikebe et al. (2002) use a slightly different sample in their
analysis, obtained by excluding the two lowest temperature clus-
ters from HIFLUGCS, ending up with a sample of 61 clusters with
X-ray temperatures ranging from 1.4 up to 11 keV. Among these,
56 have X-ray temperatures derived by Ikebe et al. (2002) from
ASCA data by means of a two-temperature model that takes into ac-
count a possible contribution from a cooler component at the cluster
core.

In order to define the observed cluster sample with which to com-
pare the artificially-generated cluster catalogues, we will impose
more restrictive selection criteria on HIFLUGCS than Ikebe et al.
(2002) did. We will only consider clusters with measured X-ray flux
in the [0.1, 2.4] keV band above 2.2 × 10−11 erg s−1 cm−2, X-ray
temperature higher than 2 keV, and a redshift between 0.03 and 0.10
(when performing tests, we found that including clusters with z <

0.03 seems to lead to an increase in the best-fitting σ 8 by a few per
cent). These ranges were chosen to maximize confidence in com-
pleteness of the sample, to minimize cosmic variance, and because
the luminosity–temperature relation is expected to deviate from a
power law below 2 keV due to non-gravitational physics.

So that we can account for the measurement errors both in flux
and temperature, which can lead to incompleteness effects when
imposing either flux or temperature criteria in the sample selec-
tion procedure, we used Monte Carlo simulations to generate 40
realizations of the HIFLUGCS catalogue, with the measurement
errors in flux and temperature modelled as Gaussian distributed.
We then imposed our cluster selection criteria, described above,
on these catalogues to obtain a set of 40 observed cluster samples,
with very similar but not identical numbers of clusters, represent-
ing different possible realizations of the chosen observed cluster
sample.

We performed extensive tests to determine the minimum number
of Monte Carlo realizations of HIFLUGCS that should be generated,
so as to properly account for the effect of the measurement errors on
the distribution of the cluster properties, within the observed data
sample which we will use to compare with the artificially-generated
cluster catalogues. We found that 40 realizations are enough, and
increasing their number to 200 or 1000 has a negligible effect both
on the typical distribution of cluster properties and on the final prob-
ability distribution for σ 8. We also generated bootstrap realizations
of HIFLUGCS, to determine whether the flux and temperature mea-
surement errors provided by Ikebe et al. (2002) were realistic. They
seem to be, given that the bootstrap realizations share the same mean
statistical properties as the Monte Carlo ones, leading to negligible
differences in the final probability distribution of σ 8 values. Finally,
there does not seem to be any systematic shift in the mean statistical
properties of both the Monte Carlo and bootstrap catalogues with
relation to HIFLUGCS, which is reflected by the fact that our result
on σ 8 does not change even if we just apply our selection criteria
to HIFLUGCS, and then compare the resulting cluster sample with
the artificially-generated cluster catalogues.

3 T H E M O C K C L U S T E R C ATA L O G U E S

The direct simulation of X-ray cluster catalogues from hydrodynam-
ical simulations is beyond present computational means due to the
excessive number of particles required to obtain statistically-robust
cluster abundances with temperatures above a few keV. Instead, we
appeal to the method used by Holder, Haiman & Mohr (2001), which
is to use generalized mass functions of dark matter haloes to gener-
ate catalogues of clusters identified by their redshift and mass, and
then estimate their X-ray temperatures using the mass–temperature
relation of clusters in hydrodynamical simulations. With relation to
previous work, the main improvement in this paper is the use of a
mass–temperature relation that is drawn from simulations with more
detailed models of the intracluster gas physics than have previously
been implemented, and which closely match the X-ray properties
of observed clusters (Thomas et al. 2002; Muanwong et al. 2002,
hereafter MTKP02).

3.1 The mass function

Currently no standard definition of a dark matter halo exists, al-
though it is convenient to define a halo as an overdense concen-
tration of matter using the results of the spherical top-hat collapse
model (STHCM; e.g. Peebles 1993; although see also Sheth, Mo &
Tormen 2001). For � = 1, the boundary of a halo predicted by the
STHCM contains a mean internal overdensity of 18π2 ≈ 178 rela-
tive to the critical density. This result has led many authors to define
haloes using an overdensity contrast of 200 (which we take as our
fiducial case). Note that even with the current generation of X-ray
satellites it is not feasible to measure spatially-resolved properties
of clusters to such large radii.

A comprehensive study of the mass function of cold dark matter
(CDM) haloes was carried out by Jenkins et al. (2001, hereafter
Jen01), who compared results from the largest N-body simulations
available (the Hubble Volume simulations simulated by the Virgo
Consortium, which used sufficiently large volumes to obtain reli-
able abundances of haloes on scales corresponding to rich clusters
of galaxies) to the mass function predicted by Press & Schechter
(1974). They demonstrated that the simulated mass function predicts
a lower abundance of haloes at low masses than the Press–Schechter
function, but a higher abundance at high masses. Although they did
not investigate the cause of this discrepancy, they pointed out that the
Press–Schechter Ansatz that all mass is contained in bound objects
is untrue in the simulations for conventional halo definitions.

Jen01 produced fits to simulated mass functions using two dif-
ferent estimators: the spherical-overdensity (SO) and friends-of-
friends (FOF) algorithms. The first case, as implemented by Lacey
& Cole (1994), finds and ranks the densest dark matter particles
and, starting from the densest, grows a sphere until the mean inter-
nal density equals some multiple of the critical density, ρcr, 〈ρ〉 =
�ρcr. Particles within this halo are then removed from the list and
the procedure is repeated until all haloes are found down to a given
mass limit. The FOF algorithm (Davis et al. 1985) links particles
together using a fixed linking length of bn−1/3, where n is the mean
particle density. The FOF algorithm does not impose spherical sym-
metry on the shapes of the haloes (which are typically triaxial) but
can sometimes link together haloes which are in close proximity.
It is important to use a consistent definition for cluster masses to
define both the mass function and the mass–temperature relation;
failure to do so can lead to errors of 10 per cent in the derived value
of σ 8.
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A further result from the Jen01 analysis was that the mass func-
tions, when expressed as a function of ln(σ−1) (where σ (M) is the
generalization of σ 8 to any mass scale), are independent of cosmol-
ogy if haloes are defined using either a fixed linking length (e.g.
b = 0.2) in the FOF case or defining the SO threshold with respect
to the mean background density (e.g. � = 180�0) in the SO case.
This was confirmed by Evrard et al. (2002, hereafter Evr02), who
also provided fits (as a function of �) to simulated mass functions
using a SO algorithm with � = 200 (i.e. overdensity measured with
respect to the critical density). For this paper, we adopt M200 as the
fiducial definition of cluster mass, and use the Evr02 fits to esti-
mate the mass function at different �(z). We have checked that our
method for measuring cluster masses from the simulations (required
for the calibration of the mass–temperature relation) produces al-
most identical results to the SO method used by Jen01 and Evr02
(the median difference in halo masses is less than 0.5 per cent).

3.2 The mass–temperature relation

In this section, we use results drawn from simulations carried out us-
ing the HYDRA1 N-body/hydrodynamics code (Couchman, Thomas
& Pearce 1995; Pearce & Couchman 1997) on the Cray T3E com-
puter at the Edinburgh Parallel Computing Centre as part of the
Virgo Consortium2 programme of investigations into structure for-
mation in the Universe. Details of the method and choice of simula-
tion parameters were discussed by MTKP02; we summarize details
pertinent to the results of this paper below.

We adopt the currently-favoured �CDM cosmological model,
setting the density parameter �0 = 0.35, cosmological constant
�� = 0.65, baryon density �b = 0.038, Hubble parameter h = 0.71
and linear power spectrum shape parameter  = 0.21. The purpose
of this paper is to provide constraints on σ 8 and so it may seem
premature to pick one particular value for our simulations. However,
the mass–temperature relation of clusters is largely independent
of σ 8. The simulations presented in MTKP02 use σ 8 = 0.9; we
have subsequently repeated one of the simulations with a lower
normalization, σ 8 = 0.7, and find an identical relation within the
uncertainties.

MTKP02 presented three simulations which differed in the way in
which the gas was heated and cooled. In the first simulation, a non-
radiative model, the gas could undergo heating by adiabatic com-
pression and shocks but could not cool radiatively. Consequently,
the resulting clusters are far too luminous for their mass and so do
not agree with observed X-ray scaling relations (MTKP02). We do
not use results from this simulation.

In the radiative simulation, gas was able to cool radiatively using
the collisional ionization equilibrium tables of Sutherland & Dopita
(1993). Cooled material was permitted to form stars, removing low-
entropy material with short cooling times from the centres of the
clusters. Finally, in the pre-heating simulation (which also includes
cooling), the specific thermal energy of the gas was raised by 1.5 keV
per particle at z = 4, to crudely model the effects of energy injection
by galactic winds. Both models reproduce key X-ray cluster scaling
relations at z = 0, although the former predicts too much cooled gas
(i.e. stars and galaxies) compared to observations and the latter too
little.

We estimate the X-ray temperature of each cluster by weighting
the contribution from each hot gas (T > 105 K) particle by its

1 See http://hydra.susx.ac.uk/
2 See http://virgo.susx.ac.uk/

Table 1. Power-law fits to the simulated mass–temperature relations of X-
ray clusters: cluster sample; number of clusters in sample; slope of relation,
s; rms dispersion in temperature about best fit (see text); value of M200/1014

h−1 M� at 3 keV; value of M200/1014 h−1 M� at 6 keV.

Sample N s rms M200@3 M200@6

All data
Radiative 36 1.80 0.092 2.9 10.1
Pre-heating, σ 8 = 0.9 31 1.59 0.056 2.4 7.3
Pre-heating, σ 8 = 0.7 12 1.75 0.049 2.1 7.1
Pre-heating, σ 8 = any 43 1.61 0.053 2.4 7.3

Cooling-flow corrected
Radiative 36 1.55 0.079 2.3 6.8
Pre-heating, σ 8 = 0.9 31 1.51 0.054 2.2 6.2
Pre-heating, σ 8 = 0.7 12 1.70 0.040 2.4 7.7
Pre-heating, σ 8 = any 43 1.54 0.049 2.2 6.4

bolometric flux

TX = �i miρi�bol(Z , Ti )Ti

�i miρi�bol(Z , Ti )
. (1)

Here, mi, ρi and T i are the mass, density and temperature of the
particles, respectively, Z = 0.3 Z� is their metallicity and �bol is
the bolometric cooling function from Sutherland & Dopita (1993).
Adopting a soft-band cooling function (appropriate for ROSAT ob-
servations) makes no significant difference to the estimated tem-
perature. Many clusters show enhanced emission from the cluster
core that has a lower temperature than the cluster mean (MTKP02).
For this reason, we present results for the mass–temperature rela-
tion both including and excluding the X-ray emission from within
the ‘cooling radius’, defined as the radius within which the mean
cooling time of the gas is 6 Gyr. The latter results are referred to as
‘cooling-flow corrected’.

In Table 1, we list parameters for the straight-line relation of the
form

log(kT/keV) = const + (1/s) log
(

M200/h−1 M�
)

(2)

that minimizes the dispersion in temperature for all clusters with
log(M200/h−1 M�) > 14. The column labelled ‘rms’ gives the root-
mean-square dispersion in the log of temperature (for N − 2 degrees
of freedom) about the best-fitting line. We have also measured this
dispersion for clusters in a lower mass range, 13.7 < log(M200/h−1

M�) < 14, and find very similar values. Hence we will assume in
our analysis that the dispersion is independent of mass.

The final two columns of Table 1, labelled M200@3 and M200@6,
give the values of the mass, in units of 1014 h−1 M�, for the best-
fitting relation at temperatures of 3 and 6 keV. The numbers in the
M200@3 column are mostly very similar to each other, except for
the top entry for clusters in the radiative simulation without the
cooling-flow correction. The presence of cool gas in the cores of
these clusters lowers the emission-weighted temperature and hence
raises M200@3. The slope of the mass–temperature relation for
σ 8 = 0.7 is higher than that for σ 8 = 0.9 but the two are in agree-
ment to within the errors; with only 12 clusters covering a limited
mass range, the formal 1-sigma error in the slope for the σ 8 = 0.7
clusters is about ±0.4. The predictions for the normalizations of
the relations at 6 keV are less certain, especially for σ 8 = 0.7, be-
cause they require a degree of extrapolation beyond the temperature
range of the simulated data. For this reason, the difference between
the cooling-flow corrected normalizations at 6 keV for σ 8 = 0.7 and
σ 8 = 0.9 should not be taken too seriously. We use the combined
catalogue for our analysis in the next section, but note that very
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Table 2. Mass–temperature relations of X-ray clusters from previous sim-
ulations: paper (Evrard et al. 1996, EMN96; Bryan & Norman 1998, BN98;
Thomas et al. 2001, T01; Mathiesen & Evrard 2001, ME01; slope of rela-
tion, s; value of M200/1014 h−1 M� at 3 keV; value of M200/1014 h−1 M�
at 6 keV.

Paper s M200@3 M200@6

EMN96 Soft band 1.50 2.3 6.5
BN98 Bolometric 1.50 3.6 10.2
T01 Bolometric 1.50 2.5 7.1
ME01 Bolometric 1.39 4.0 10.6

similar results are obtained if we use the σ 8 = 0.9 relation
instead.

In Table 2 we present results from several earlier studies of the
mass–temperature relation in non-radiative simulations. Note that
these results have been obtained by rescaling, when needed, the
cluster mass to M200 (using a NFW profile; Navarro, Frenk & White
1995, 1996, 1997) and to the cosmology being considered here (as
in Bryan & Norman 1998, hereafter BN98). Clearly there is a wide
range of normalizations. This mainly results from the different res-
olutions of the simulations – although in the case of Evrard, Metzler
& Navarro (1996, hereafter EMN96) their method of temperature
estimation also plays a part. Also, on average, at fixed tempera-
ture the cluster masses in Table 2 are higher than those in Table 1.
This is due to the absence of radiative cooling; cluster cores are full
of dense, cold gas with short cooling times and this leads to low
emission-weighted temperatures. This problem is largely overcome
in the radiative and pre-heating simulations and can be reduced
even further by the omission of the cooling-flow component. For
comparison, Viana & Liddle (1996, 1999) used a normalization for
the present-day mass–temperature relation which corresponds to
M200 = 10.1 × 1014 h−1 M�(kT/6 keV)1.5, based on a simulation
of a single high-mass cluster from White et al. (1993b). This agrees
well with the results of BN98 and Mathiesen & Evrard (2001, here-
after ME01), but lies well above the values found by EMN96 and
in the radiative and pre-heating simulations reported in this paper.
This change in normalization forces the estimate of σ 8 downwards.

3.3 Mock catalogue construction

We are now in a position to be able to combine the Evr02 fits to the
mass function with the information on the cluster mass–temperature
relation from the hydrodynamical simulations, to produce mock
cluster catalogues with information on cluster redshift, mass and
X-ray temperature.

We take the present-day shape of the matter power spectrum to
be well approximated by that of a CDM model, with scale-invariant
primordial density perturbations and effective shape parameter,
 = 0.18. This is the favoured value of  from a joint analysis
of the 2dF (Percival et al. 2001) and the Sloan Digital Sky Sur-
vey (SDSS; Szalay et al. 2003; Dodelson et al. 2002) data, when
accounting for both statistical and systematic uncertainties. (The al-
lowed interval for  is [0.08, 0.28] and we confirmed that varying
 within this interval does not significantly change the final results;
changing  to either 0.08 or 0.28 leads to a variation of only 0.02
in the best-fitting σ 8, with a higher  implying a higher σ 8.)

We begin by estimating the mean number of clusters as a function
of mass (M200) and redshift, using the Evr02 fits to the mass function,
for each value of σ 8 over the interval of interest. Our redshift bins
cover the range [0.03, 0.10] in intervals of 0.001, and our mass bins

cover the range [0.1, 2.0] × 1015 h−1 M� in logarithmically-spaced
intervals of 0.01. (We have checked that our results are insensitive
to smaller bin sizes.) The initial mock cluster catalogues are then
produced by attributing to each (z, M200) bin, a number of clusters
drawn from a Poisson distribution whose mean is that predicted by
the Evr02 fits to the mass function. We assign a mass and redshift
to each individual cluster by randomly drawing the two quantities
from a quadratic distribution that best reproduces the variation in
the cluster numbers in the neighbourhood of that bin. In this manner,
we produce 1000 mock catalogues for each interesting value of σ 8.
Through extensive tests we have found that such number is enough
to properly account for the effect of the Poisson noise, as increasing
the number of mock catalogues per σ 8 to, for example, 10 000 had
a negligible effect on the final probability distribution for σ 8.

Each cluster in the catalogues is given an X-ray temperature, ran-
domly drawn from a Gaussian distribution in (log10 M200, log10kT),
with mean obtained by substituting the cluster mass (multiplied by
H (z)/H0 ∝

√
�0(1 + z)3 + (1 − �0) to account for the redshift

evolution in the normalization of the cluster X-ray temperature to
mass relation; see ME01) in expression (2), while the dispersion
is assumed to be independent of mass. We fix the present-day nor-
malization, slope and dispersion of the mass–temperature relation
using the joint cluster catalogue obtained from the pre-heating simu-
lations, where the X-ray temperatures were cooling-flow corrected.
(Using the parameters deduced from the radiative simulations does
not change the final results significantly.) Our method approximately
reproduces that used by Ikebe et al. (2002) to estimate the observed
cluster temperatures. We then exclude from the 1000 mock cata-
logues any cluster whose X-ray temperature does not exceed 2 keV.

To compare our simulated catalogues with the data we still need
to impose the chosen flux selection criterion, which forces us to use
a relation between X-ray luminosity (in the [0.1, 2.4] keV rest-frame
band) and temperature. In order to be consistent, we determine this
relation from the data simultaneously with σ 8 (see also Diego et al.
2001). We take it to be a power law of the form

log10

(
LX/h−2 erg s−1

) = A + α log10(kT/keV), (3)

with a dispersion σ log10 LX taken to be independent of temperature,
and we construct a grid of values (with dimensions 21 × 31 × 16) of
the normalization A, slope α and dispersion. For each point in this
grid, and for every one of the 1000 catalogues available for each σ 8,
we create 50 realizations of the luminosity3 for every cluster by ran-
domly drawing from a Gaussian distribution in (log10 kT , log10 LX)
with the appropriate mean and dispersion. Every cluster then has
its X-ray flux in the rest-frame [0.1, 2.4] keV band derived, from
which the flux in the observed [0.1, 2.4] keV band is estimated using
K-correction formulae. The flux limit of 2.2 × 10−11 erg s−1 cm−2

is then imposed. This generates a set of 50 000 mock catalogues
for each combination of the four parameters we wish to estimate
from the data. In all, over twenty-five billion mock catalogues were
generated.

4 R E S U LT S

We are now in possession of an ensemble of catalogues represent-
ing the observed data set, and a collection of mock catalogues for
different values of both σ 8 and the parameters that characterize the

3 Extensive tests have shown that such a number is enough to lead to a dense
coverage of the range of possible luminosity distributions, and increasing
the number of realizations to, for example, 200 had a negligible effect on
the final probability distribution for σ 8.
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X-ray luminosity–temperature relation. We chose to perform the
comparison between the observed and theoretical catalogues via a
(three-way) two-dimensional (2D) Kolmogorov–Smirnov (KS) test.
This test is a generalization to 2D distributions of the traditional KS
test, and is due to Fasano & Franceschini (1987), following an ear-
lier idea of Peacock (1983). A very good description of the 2D KS
test can be found in Press et al. (1992). In order to calculate the
probability of each set of four free parameters being the correct one,
we compare each of the observed catalogues with each mock cata-
logue, and then add the probabilities of each pair of catalogues being
drawn from the same underlying distribution of cluster properties.
The probability is taken to be zero if the two catalogues being com-
pared do not have the same number of clusters, otherwise it is given
by the product of the probabilities that result from applying the 2D
KS test to the three available distributions of cluster properties: (z,
kT), (z, LX) and (kT , LX). The set of free parameters considered
most correct will thus be the one that most often closely reproduces
the observed distribution of the cluster properties (z, kT , LX).

4.1 Methodology tests

As far as we are aware, the 2D KS test has not previously been
applied in the same context as here. We chose to employ the KS
test rather than the widely-used likelihood method because it allows
a fairly simple incorporation of the selection effects entering the
observations, and can allow for scatter in the cluster relations. Ikebe
et al. (2002) employed the likelihood function, but did not include
scatter in the mass–temperature relation, although Pierpaoli et al.
(2003) were able to include the scatter in a likelihood analysis.
We favour the 2D KS test because of its ease of implementation,
although we do not expect it to lead to significantly different results
from the likelihood method.

It is clearly important to compare the 2D KS test to the likelihood
method. We do this by applying the two methods to a simplified situ-
ation using 1000 mock observational cluster catalogues (we checked
that generating more does not affect the results of the comparison)
produced using the Evr02 fits to the mass function in the same man-
ner as described in Section 3.3, with each cluster being characterized
by its redshift, z, and mass, M200. The assumed fiducial model had
�0 = 0.35, σ 8 = 0.8 and  = 0.18. The sky coverage was the same
as that of HIFLUGCS and the redshift interval considered was 0.03
< z < 0.10. The mock observational catalogues were produced as-
suming that all clusters with M200 above 4.6 × 1014 h−1 M� are
detected, and none below. In all they have on average 41 clusters (a
number similar to the HIFLUGCS subsample we are working with).

When applying the 2D KS test to each of the 1000 mock obser-
vational catalogues, 1000 synthetic catalogues were produced for
each σ 8 in the interval of interest [0.60, 1.00], thus overall around
4 × 107 catalogue comparisons were made. In this case, the likeli-
hood function is the product of the Poisson probabilities of finding
exactly one cluster in the element dM200 dz at each of the (Mi

200, zi)
combinations present in the mock catalogues, and of finding zero
clusters elsewhere in the (M200, z) plane (see, for example, Marshall
et al. 1983).

In Fig. 1 we show the probability distributions for σ 8 obtained
by the two methods. This comparison shows that both methods
are unbiased, picking up the fiducial σ 8 = 0.8 as the most proba-
ble value. Further, the shape of the two probability distributions is
very similar, although applying the 2D KS test seems to result in
slightly more conservative confidence limits. We have made simu-
lations with other initial assumptions and the results do not change
qualitatively.

Figure 1. Marginalized probability distributions for σ 8, obtained through
the 2D KS test (full line) and the likelihood method (dotted line).

4.2 Application to HIFLUGCS

The application of the 2D KS test to the HIFLUGCS data in the
manner previously described results in the marginalized probability
distributions, for each free parameter over the three others, presented
in Figs 2 and 3. The histograms originate from the discretization of
our parameter space (σ 8, A, α, σ log10 LX) for the Monte Carlo simu-
lations. The continuous lines represent the most probable underlying
probability density functions, and result from the application of a
non-parametric smoothing technique to the histogram data. Note
that these functions have been renormalized for easier comparison
with the histograms. In summary

σ8 � 0.78 within [0.72, 1.08], (4)

and

log10

(
LX/h−2erg s−1

) = A + α log10(kT/keV), (5)

with

A � 42.1, within [41.2, 42.5], (6)

α � 2.5 within [1.5, 3.5], (7)

σlog10 LX � 0.3 within [0.0, 0.6]. (8)

where the given ranges are all at the 95 per cent confidence level.
The most probable combination of the four parameters we consider
is σ 8 = 0.77, A = 42.2, α = 2.6 and σ log10 LX = 0.175. Note that
the distribution for σ 8 is considerably non-Gaussian, with the me-
dian value σ 8 = 0.81 being higher than the modal one. The tail

Figure 2. Marginalized probability distribution for σ 8, showing the bins as
calculated and a smoothed version of the distribution.
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Figure 3. Marginalized probability distributions for the normalization A
(top) and slope α (middle) of the relation between X-ray temperature and
luminosity, as well as for its dispersion σ log10 LX (bottom).

extends much further to high σ 8 because, as the number of exist-
ing clusters increases, it remains possible to reproduce the observed
number of clusters by simultaneously choosing lower values for A
and higher values for σ log10 LX . In the limit where no dispersion in the
relation between X-ray luminosity and temperature is allowed, the
possibility of σ 8 taking high values disappears, and the marginalized
probability distribution for σ 8 becomes close to Gaussian. Re-doing
our analysis not allowing for any dispersion in the relation between
X-ray luminosity and temperature, the most probable value for σ 8

changes to 0.76, with the 95 per cent confidence interval now ex-
tending from 0.70 to 0.81, while the most probable values for the
parameters A and α remain almost the same, changing to 42.3 and
2.6, respectively.

These results are similar to those obtained by Ikebe et al. (2002).
The comparison between the two analyses is made difficult by the
fact that they only indicate the most probable values for A, α and
σ log10 LX for their best-fitting �0 and σ 8, which are 0.26 and 0.94
respectively if only T > 3 keV clusters are considered. Concentrat-
ing on this case, and assuming �0 = 0.26 (plus  = 0.206, as in

Ikebe et al. 2002), we attempted to recover the values obtained by
Ikebe et al. (2002) for the other four parameters. We took into ac-
count that their assumed normalization for the cluster mass (M200)
to X-ray temperature relation (estimated as if z = 0.05) is higher,
such that for a 3-keV cluster they assume a cluster mass around
4 per cent higher than us, while at 6 keV the difference increases to
13 per cent, as well as the fact that they do not take into account a
possible dispersion in the cluster X-ray temperature at fixed mass.
A most probable value of σ 8 = 0.98 was obtained by applying our
procedure, with good agreement also found for the parameters A, α
and σ log10 LX . Given that some differences remain between the two
analyses, our results thus seem to be consistent with those of Ikebe
et al. (2002).

In order to determine which type of information in the data is driv-
ing the results, we determined the most probable values for the four
parameters under consideration by applying in isolation the 2D KS
test to the three available distributions of cluster properties: (z, kT),
(z, LX) and (kT , LX). σ 8 is essentially unconstrained by the (z, LX)
distribution. All the information comes from the two others, with
the (kT , LX) distribution being slightly more constraining than the
(z, kT) one. Consistently, the former prefers 0.78 as the most prob-
able value for σ 8, while the latter settles for 0.79. The information
on the parameters A, α and σ log10 LX is roughly equally distributed
amongst the three distributions, although again (kT , LX) and (z, LX)
are always the most and least constraining respectively, and when
taken in isolation all three distributions lead to very similar results.

In Fig. 4 we compare the cluster properties between a realization
of the HIFLUGCS subsample selected for the analysis, the mock
sample that most resembles it, generated for the most probable set
of parameters, and the underlying cluster population. Notice that the

Figure 4. Comparison of distribution of cluster properties (T versus z, top;
LX versus T , bottom) between a realization of the HIFLUGCS subsample
considered, the mock sample that most resembles it, generated for the most
probable set of parameters, and the underlying cluster population.

C© 2003 RAS, MNRAS 346, 319–326



The power spectrum amplitude from clusters 325

incompleteness of the flux-limited samples increases considerably
as the cluster X-ray temperature becomes lower, so that below an
X-ray temperature of about 5 keV we can conclude that HIFLUGCS
is vastly incomplete.

Our analysis is for �0 = 0.35, which is the value for which the
large hydrodynamical simulations were run. The spectacular recent
results from the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al. 2003; Spergel et al. 2003) are consistent with this, but
their best fit is lower at �0 = 0.27. While we are unable to run new
large simulations, we can predict the effect on σ 8 using the scaling
found in earlier analyses. VL99 found that for flat cosmologies
σ 8 ∝ �−0.47

0 , and using this scaling we obtain a best-fitting σ 8 of
0.88 for �0 = 0.27. Given the small range over which this scaling
is needed, the fractional uncertainty in σ 8 should be unchanged.

5 D I S C U S S I O N

To set the context for the following discussion, we first remind
the reader of the constraint from VL99, which for �0 = 0.35 gave
σ 8 = 0.92 within [0.73, 1.12] at 95 per cent confidence. By contrast,
in Seljak (2002) a value of σ 8 = 0.70 was obtained, based on the
cluster mass to X-ray temperature relation derived in Finoguenov
et al. (2001) from cluster data.

The calculation of σ 8 performed in this paper is substantially
different from that carried out in VL99: the semi-analytical mod-
elling featured a change in the normalization of the assumed cluster
mass–temperature relation and in the shape of the assumed clus-
ter mass function; a different observational data set was used; and
the method of estimating σ 8 from Monte Carlo simulations differed
from the previous likelihood-type calculation, where no dispersion
in the cluster relations was considered. Although the most prob-
able value for σ 8 is quite different in both cases, the 95 per cent
confidence intervals happen to be very similar.

In order to find the most important factors behind the different
results, we ran several Monte Carlo simulations. First, we found
that the inclusion of dispersion in the mass–temperature relation
at the level considered in this paper does not seem to make much
difference. Secondly, and more surprisingly, we found that replacing
the Evr02 mass function with the Press–Schechter or the Jen01
mass function also changes the most probable value for σ 8 by less
than 2 per cent. This appears in contradiction with claims in the
literature, including our own (Wu 2001; Pierpaoli et al. 2001; Viana,
Nichol & Liddle 2002), that the choice of mass function can change
σ 8 by 5–10 per cent. However, that statement is only true if we
keep the mass–temperature relationship unchanged, but in fact these
different mass functions refer to different masses; Evr02 gives the
number density of haloes with mass M200, Press–Schechter uses
the virial mass which for the cosmology assumed here is about
M108, and the Jen01 mass function corresponds to M63 for the same
cosmology. If we use the NFW cluster density profile to scale these
mass functions to the same mass definition (e.g. the virial mass),
most of the difference in σ 8 disappears. We note, however, that
this similarity of results may be specific to the cosmology adopted
here.

A change that does make a difference is that, compared to VL99,
this paper uses a much lower normalization of the cluster mass to
X-ray temperature relation. So that we could determine the influ-
ence of such normalization on our results, and be able to compare
them more easily with others, we calculated the dependence of the
most probable σ 8 on the value of the assumed present-day mass
(M200@5 keV) of a 5-keV cluster (approximately the median tem-
perature of the HIFLUGCS subsample we work with). Taking the

index of the cluster mass to X-ray temperature relation to be the
standard 1.5, we found

σ8 = 0.37 + 0.11 ×
(

M200@5 keV

1014 h−1 M�

)0.83

. (9)

Note that in our main calculation we assumed M200@5 keV = 4.83
× 1014 h−1 M�, for an index of 1.54. Given that in VL99 it was
assumed M200@5keV = 7.67 × 1014 h−1 M�, we obtain σ 8 = 0.97
as the value we would expect from VL99 if the only significant dif-
ference between the analyses was that change in the normalization.
Compared with the VL99 value of σ 8 = 0.92, this seems to be cor-
rect, with the HIFLUGCS subsample we consider favouring just a
slightly higher normalization than the Henry & Arnaud (1991) data
set used in VL99. Although it is difficult to untangle all the com-
peting effects, we suspect that together the new analysis method
and the HIFLUGCS data set allow for a much better estimate of
incompleteness which would help explain why they favour a higher
normalization.

Turning to comparison with other work, the reason why Seljak
(2002) obtained a significantly smaller value for σ 8 with relation
to VL99 (to which it is more easily compared) is the assumption at
fixed cluster temperature of a mass that is about 2.4 times lower than
that assumed in VL99, although this effect is mitigated by Seljak’s
assumed local cluster abundance at about 6 keV (from Pierpaoli
et al. 2001), which was higher than that of VL99. In this paper we
too have a cluster mass at 6 keV which is much smaller than VL99,
but the reduction is by a smaller factor of 1.6.

As we were completing this work, a paper by Pierpaoli et al.
(2003) appeared in which a similar analysis to ours and that in
Ikebe et al. (2002) was carried out. The observed cluster sample is
also derived from HIFLUGCS, but otherwise they use a different
approach to obtain constraints on σ 8. While both here and in Ikebe
et al. (2002) an attempt is made to constrain σ 8 simultaneously with
the relation of X-ray temperature to luminosity, in Pierpaoli et al.
(2003) such a relation is assumed a priori (to be that given by ex-
pression 3 in Ikebe et al. 2002). We have attempted to reproduce
the constraint obtained for σ 8 by Pierpaoli et al. (2003) when they
derive the observed cluster sample just from HIFLUGCS. Such a
constraint can be read from the full line in figs 4 and 5 of Pierpaoli
et al. (2003). Concentrating on the case of �0 = 0.35, and perform-
ing an analysis equivalent to that in Pierpaoli et al. (2003), taking
care to make the same assumptions and apply the selection crite-
ria in the same manner, but using the 2D KS method instead, we
found a most probable value for σ 8 and the 90 per cent confidence
interval very similar to theirs (a slight overestimation by 0.02). On
the other hand, if we just change in our own analysis the relation of
cluster mass to X-ray temperature so that M200@5 keV = 3.82 ×
1014 h−1 M� at present and its index to 1.5, as in Pierpaoli et al.
(2003), the result for σ 8 is again very similar (about 0.71) to that
obtained in Pierpaoli et al. (2003). Clearly, the most significant fac-
tor leading to the different HIFLUGCS based result obtained here
and in Pierpaoli et al. (2003) regarding σ 8 is the difference in the
normalization of the relation of cluster mass to X-ray temperature.

Our results do not indicate a dramatic reduction in σ 8 derived
from the abundance of X-ray clusters. Several other recent analyses
have favoured low σ 8, for instance from 2dF and cosmic microwave
background (CMB) data (Efstathiou et al. 2002; Lahav et al. 2002),
from using weak lensing to estimate cluster masses (Viana et al.
2002), and from the local X-ray cluster luminosity function (Allen
et al. 2002), but those are at least marginally compatible with our
present result given the uncertainties. Indeed, results from WMAP
have forced a modest increase in estimates of σ 8 via CMB data
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(Spergel et al. 2003). Our estimated value for σ 8 is compatible with
all published weak lensing measurements (e.g. Bacon et al. 2002;
Hökstra, Yee & Gladders 2002; Refregier, Rhodes & Groth 2002;
Van Waerbeke et al. 2002), although only marginally with the very
low results of Brown et al. (2003), Hamana et al. (2003) and Jarvis
et al. (2003), as well as at the other extreme with that of Maoli et al.
(2001).

In the near future, a decrease in the uncertainty in the estimation
of σ 8 from X-ray clusters could come from essentially two sources.
On the theoretical side, it would be important to reliably estimate
the X-ray luminosity of clusters using hydrodynamical N-body sim-
ulations. This would enable us to bypass the X-ray temperature as
the cluster mass estimator. Although temperature is more reliable,
it ends up not being as useful as it could be due to the fact that all
cluster catalogues are flux-limited instead of temperature selected,
so an estimation of the cluster X-ray flux always needs to be made.
On the observational side, both an improvement in the temperature
determination and an increase in the range of redshift probed (i.e. a
decrease in the X-ray flux detection limit) would help bring down the
uncertainty in the estimation of σ 8. Hopefully, both can be achieved
with the X-ray satellites Chandra and XMM–Newton. In particular,
it is expected that the serendipitous cluster survey XCS (Romer et al.
2001), to be assembled with XMM–Newton data, will help greatly
in both issues.
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