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ABSTRACT
We present a statistical exploration of the parameter space of the De Lucia and Blaizot version
of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation.
This is achieved by applying a Monte Carlo Markov Chain method to constrain the six free
parameters that define the stellar and black hole mass functions at redshift zero. The model is
tested against three different observational data sets, including the galaxy K-band luminosity
function, B − V colours and the black hole–bulge mass relation, separately and combined, to
obtain mean values, confidence limits and likelihood contours for the best-fitting model. Using
each observational data set independently, we discuss how the SA model parameters affect
each galaxy property and find that there are strong correlations between them. We analyse to
what extent these are simply reflections of the observational constraints, or whether they can
lead to improved understandings of the physics of galaxy formation.

When all the observations are combined, we find reasonable agreement between the majority
of the previously published parameter values and our confidence limits. However, the need
to suppress dwarf galaxy formation requires the strength of the supernova feedback to be
significantly higher in our best-fitting solution than in previous work. To balance this, we
require the feedback to become ineffective in haloes of lower mass than before, so as to permit
the formation of sufficient high-luminosity galaxies: unfortunately, this leads to an excess of
galaxies around L∗. Although the best fit is formally consistent with the data, there is no
region of parameter space that reproduces the shape of galaxy luminosity function across the
whole magnitude range.

For our best fit, we present the model predictions for the bJ-band luminosity and stellar mass
functions. We find a systematic disagreement between the observed mass function and the
predictions from the K-band constraint, which we explain in light of recent works that suggest
uncertainties of up to 0.3 dex in the mass determination from stellar population synthesis
models.

We discuss modifications to the SA model that might simultaneously improve the fit to the
observed mass function and reduce the reliance on excessive supernova feedback in small
haloes.

Key words: methods: numerical – methods: statistical – galaxies: evolution – galaxies: for-
mation.

1 IN T RO D U C T I O N

The combination of the well-established � cold dark matter
(�CDM) paradigm and the geometrical growth of computer power
in recent years has allowed direct N-body simulations to give us a
comprehensive picture of the formation and evolution of dark mat-

�E-mail: b.m.henriques@sussex.ac.uk

ter structure, from the primordial gravitational instabilities to the
formation of massive superclusters today (The Millennium Run;
Springel et al. 2005).

However, this progress is not reflected in our theoretical under-
standing of the behaviour of the baryons, with much of the physics
governing galaxy formation and evolution still poorly understood.
A combined simulation of gas and dark matter resolving small-
scale galaxy evolution processes (such as gas cooling, star forma-
tion and feedback) over a cosmologically interesting volume is still
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years away. Therefore, the only plausible method to construct a
model galaxy population for comparison with observed large-scale
surveys is using a semi-analytic (SA) formalism. Originally intro-
duced by White & Rees (1978), this formalism treats the dark matter
structure using either a Press–Schechter (Press & Schechter 1974),
Monte Carlo or N-body approach, and on top of that follows galaxy
evolution using parametrized equations governing the laws of sub-
grid physics. The basic methodology was set by Cole (1991), Lacey
& Silk (1991) and White & Frenk (1991), including the dependence
of gas cooling and star formation on the dark matter halo density
profile, feedback and chemical enrichment to account for the ef-
fect of supernova (SN) explosions on the properties of the hot gas,
and stellar population synthesis models to convert star formation
histories into observed stellar properties.

Further developments included newly derived stellar popula-
tion models and improved star formation and SN feedback laws
(Kauffmann, White & Guiderdoni 1993; Lacey et al. 1993; Cole
et al. 1994). With the level of complexity achieved, they were able
to predict a large range of galaxy properties such as star formation
rates, luminosity functions and relations between circular velocity,
luminosity, metallicity and mass-to-light ratios.

From this original recipe, two models started evolving separately,
one mainly based in Munich and another in Durham. By the end
of the decade, most of the modern-day prescriptions were already
introduced (Kauffmann et al. 1999; Cole et al. 2000), including gas
cooling, star formation, chemical enrichment and dust extinction,
calculations of discs and bulge properties, stellar population synthe-
sis models, merger follow up with dynamical friction and an early
version of the SN feedback treatment.

In Kauffmann & Haehnelt (2000), a model for the growth of
black holes (BHs) due to instabilities arising from mergers was
proposed, and Benson et al. (2003) and De Lucia, Kauffmann &
White (2004) studied new treatments of the SN feedback, including
the current model where the SN can not only reheat the cold gas into
the hot phase but also eject gas from the halo (to be reincorporated at
later times). In parallel, a number of other groups begun to develop
independent models, to study different aspects of galaxy formation
(Somerville & Primack 1999; Menci et al. 2002; Hatton et al. 2003;
Daigne et al. 2004; Monaco 2004; Kang et al. 2005).

Most recently, the Munich and Durham SAs have been com-
bined with the Millennium dark matter simulation and an additional
recipe, the BH radio mode, introduced to reproduce the quench-
ing of gas cooling star formation in the gas surrounding central
cluster galaxies (Springel et al. 2005; Croton et al. 2006; Bower
et al. 2006; see also Granato et al. 2004; Cattaneo et al. 2006;
Menci et al. 2006; Monaco, Fontanot & Taffoni 2007; Somerville
et al. 2008).

Finally, present-day studies include new dust models (De Lucia &
Blaizot 2007, hereafter DLB07), the study of alternative feedback
processes such as galactic winds (Bertone, De Lucia & Thomas
2007), improved recipes for the stripping of gas during galaxy
mergers (Font et al. 2008) and investigation of the ability of the
energy released by active galactic nuclei (AGN) feedback to repro-
duce the properties of the intra-cluster medium (Bower, McCarthy
& Benson 2008).

With all these recipes in place, the models successfully reproduce
a vast range of observable properties, from galaxy luminosities and
colours, including environment dependences, to scaling relations
such as Tully–Fisher diagrams. However, until now the level of
agreement with observations and the relative weight of different
observations in the final choice of the parameters have never been
studied in a statistically consistent way.

Moreover, the large number of observational properties that the
models aim to predict requires a large number of parameters (some
of which are strongly correlated), producing considerable difficul-
ties in determining how to improve the agreement with new ob-
servations without destroying the match with existing data sets. In
addition, whenever reasonable agreement proves to be impossible,
it is hard to know whether there is a failure in determining the
right parameter configuration, whether there is a fundamental prob-
lem with the underlying model or whether the introduction of new
physics is called for.

These difficulties can be overcome by combining multiple ob-
servations with proper sampling of high-dimensional parameter
spaces. This has proved to be a fruitful approach in theoretical
cosmology where techniques such as Monte Carlo Markov Chain
(MCMC) parameter estimation have been extensively used (see
Trotta 2008 for a comprehensive review). The aim of this paper is to
introduce MCMC techniques into SA models of galaxy formation.
While this work was being developed, a first result was produced by
Kampakoglou, Trotta & Silk (2008). These authors have introduced
similar tools to their own SA recipe, an extension of Daigne et al.
(2004), which uses a statistical method to generate haloes. We differ
from them in that we use the SA model (DLB07), in our case built
upon a direct dark matter simulation of a cosmological size (the
Millennium Run).

This will allow us to understand how galaxy properties are af-
fected by individual parameters, obtain confidence limits for the
parameters and verify the agreement between the model and differ-
ent observations in a statistically robust way.

This paper is organized as follows. In Section 2, we briefly de-
scribe the SA model used in our study. In Section 3, we present
the MCMC technique used to constrain the model parameters and
explain how it is implemented into the SA recipe. Section 4 de-
scribes the observational data used in this work, clarifying which
parameters are constrained by each observational galaxy property.
In Section 5, we present our results including correlations between
the parameters analysed and predictions for our best-fitting model.
Finally, in Section 6 we summarize our conclusions.

2 TH E MO D EL

In this section, we briefly describe the SA model we use for this
work (DLB07), and the underlying dark matter simulation, the Mil-
lennium Simulation (Springel et al. 2005).

The Millennium Simulation traces the evolution of dark matter
haloes in a cubic box of 500 h−1 Mpc on a side. It assumes a �CDM
cosmology with parameters �m = 0.25, �b = 0.045, h = 0.73,
�� = 0.75, n = 1 and σ 8 = 0.9, where the Hubble parameter is
H 0 = 100 h−1 km s−1 Mpc−1. The simulation follows 21603 dark
matter particles of mass 8.6 × 108 h−1 M�. Since dark matter haloes
are required to contain at least 20 particles, the minimum halo mass
is 1.7 × 1010 h−1 M�, with a corresponding baryonic mass of about
3.1 × 109 h−1 M�.

The coupling of the SA model on to the high-resolution N-body
simulation follows the technique implemented by Springel et al.
(2001). The treatment of physical processes driving galaxy evo-
lution builds on the methodology introduced by Kauffmann et al.
(1999), Springel et al. (2001) and De Lucia et al. (2004), and is a
slightly modified version of that used in Springel et al. (2005) and
Croton et al. (2006).

The model divides the gas content of galaxies into several distinct
phases. When the galaxy first forms, the gas enters the hot halo at
the virial temperature. It can then cool down to join the cold disc.
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Table 1. Best-fitting parameters for the SA model from
DLB07. The first six parameters are frozen in our anal-
ysis at the values shown here. A detailed description of
the parameters is given in the text.

f b z0 zr Tmerger R Y
0.17 8 7 0.3 0.43 0.03

αSF kAGN f BH εdisc εhalo γ ej

0.03 7.5 × 10−6 0.03 3.5 0.35 0.5

Stars form from the disc, and feedback of energy via SNe can cause
gas to heat back up from the cold disc to the hot halo. Finally, it is
possible to heat gas still further, ejecting it from the galaxy into an
external reservoir from which it gradually leaks back into the hot
halo.

From the original 12 parameters in the model, we choose to
freeze six of them at the values chosen by DLB07, as shown in
the top row of Table 1. The cosmic baryon fraction, f b, is fixed
by the cosmology,1 while the redshifts of the beginning and end
of reionization (z0, zr) are used to modify the baryon fraction in
small haloes, accounting for the effects of photo-ionizing heating
(Kravtsov, Gnedin & Klypin 2004; Croton et al. 2006). Tmerger is
the threshold mass ratio that defines the distinction between major
and minor mergers. R is the recycled fraction and Y the yield, both
of which depend upon the details of the stellar initial mass function
(IMF). The observational data that we use in this work do not allow
us to strongly constraint any of these values.

That leaves six free parameters in our study. These are the star
formation efficiency, αSF, the fraction of cold gas accreted by the
central BH during mergers, f BH, the quiescent hot gas BH accretion
rate, kAGN, the SN feedback disc reheating efficiency, εdisc, the SN
feedback halo ejection efficiency, εhalo, and the ejected gas reincor-
poration efficiency, γ ej. We briefly describe the meaning of each
of these parameters below; for a full description see Croton et al.
(2006) and DLB07.

The model converts cold gas into stars at a rate given by

ṁ� = αSF
(mcold − mcrit)

tdyn,disc
, (1)

where mcold is the mass of cold gas, mcrit is the mass that corresponds
to a critical surface density above which gas can collapse and form
stars (following Kennicutt 1998) and tdyn,disc is the dynamical time
of the disc. Note that the fraction of mass locked up in stars is
(1 − R)ṁ�dt , the rest being instantaneously returned to the disc.

As massive stars complete their life cycle, SN events start inject-
ing energy into the surrounding medium, reheating cold disc gas
and even ejecting gas from the hot halo.

For each mass 	m� turned into stars, the amount of gas reheated
from the cold disc to the hot halo is given by

	mreheated = εdisc	m� (2)

with the canonical efficiency of 3.5 being motivated by observations
by Martin (1999).

This proves insufficient to prevent star formation in dwarf galax-
ies as the cooling times are so short that the gas rapidly cools back

1 Note that, as in DLB07, we use the value of 0.17 suggested by Wilkinson
Microwave Anisotropy Probe rather than the value of 0.18 used to generate
the power spectrum for the Millennium Simulation.

down to rejoin the disc. For this reason, and motivated also by ob-
servations of galactic outflows (Martin 1996), the models allow SN
to expel gas completely from low-mass galaxies.

The amount of energy released by SN during the formation of
	m� stars is

	ESN = 0.5 εhalo 	m�V
2

SN, (3)

where V SN = 630 km s −1. Any excess2 energy left over from re-
heating the cold gas is used to eject a mass of gas 	mejected from the
galaxy

	mejected =
(

εhalo
V 2

SN

V 2
vir

− εdisc

)
	m�, (4)

where Vvir is the circular velocity of the dark matter halo.
This ejected gas is kept in an external reservoir and returned to

the hot halo at a rate

ṁejected = −γej
mejected

tdyn
, (5)

where mejected is the mass of ejected gas and tdyn is the dynamical
time of the halo.

SN feedback is ineffective in large galaxies and so another form of
heating must be included. Without it, central cluster galaxies appear
too massive and too blue, an aspect of the cooling flow problem,
well known to X-ray astronomers. The solution is thought to be
mechanical heating by BHs accreting at well below the Eddington
limit, with the amount of energy released depending on the mass
accretion rate of the central supermassive BH, which in turn depends
on the BH mass.

To describe this process, it is necessary to introduce two different
modes of AGN activity: the quasar and radio modes. The former is
thought to be inefficient at heating the gas but is primarily respon-
sible for BH growth. It was originally introduced into the models
simply to predict the mass of central BHs, and the corresponding
SA model parameter, f BH, regulates the BH growth by accretion
associated with galaxy mergers

	mBH,Q = fBH(msat/mcentral) mcold

1 + (280 km s−1/Vvir)2
. (6)

The radio-mode reflects the BH growth via quiescent accretion
in a static hot halo. It may represent either Bondi accretion directly
from the hot phase or the accretion of small quantities of cold gas.
It is described by the phenomenological model

ṁBH,R = kAGN

( mBH

108 M�
) (

fhot

0.1

) (
Vvir

200 km s−1

)3

, (7)

where mBH is the BH mass and f hot is the mass fraction of hot gas
in the halo.

The radio-mode makes a minor contribution to the growth in
mass of the BH but is assumed to generate mechanical heating at a
rate

LBH = η ṁBH,R c2, (8)

where c is the speed of light and the efficiency parameter η is frozen
at 0.1.3 This heating is used to reduce the rate at which gas cools
from the hot halo into the cold disc.

2 Note that the reheated fraction is not reduced if this excess is negative.
3 Note that it is the combination η kAGN that determines the heating rate so
that the value of η is unimportant.
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3 MO N T E C A R L O MA R KOV C H A I N

3.1 Bayesian Monte Carlo Markov Chain analysis

MCMC methods are a class of algorithms for sampling a multidi-
mensional space with a probability proportional to the likelihood
that the model describes the observational constraints. The follow-
ing brief description follows that in Press et al. (2007).

A typical application of this method is when it is possible to
calculate the probability, P (D|x), of a given data set, D, given the
values of some model parameters, x. Bayes’ theorem says that,
given a prior P(x), the (posterior) probability of the model (which
will be sampled by the MCMC) is π (x) ∝ P (D|x) P (x) with an
unknown normalizing constant. The advantages of MCMC are that
the posterior distribution and correlations for the parameters in study
can be easily recovered from the sample list and the un-normalized
probability, and that the computational power required scales only
linearly with the number of parameters.

The MCMC method uses a Markov chain to step from one point
in the sample space to the next, meaning that each point is chosen
from a distribution that depends only on the preceding point (the
ergodic property). The transition probability p(x2|x1) for stepping
from point x1 to point x2 should satisfy the detailed balance equation

π (x1) p(x2|x1) = π (x2) p(x1|x2). (9)

3.2 Metropolis–Hastings algorithm

There are several algorithms that can produce a chain with the re-
quired properties, the most common being the Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970). This method
requires a proposal distribution q(x2|x1) that can assume various
shapes, as long as the chain reaches everywhere in the region of
interest. However, an inappropriate choice can delay significantly
the convergence of the chain. Considering the underlying probabil-
ity distribution of our parameters we choose a lognormal proposal
distribution with a width that assures that the final acceptance of the
chain is between 10 and 40 per cent.

The chain is then started in a randomly selected point in parameter
space x1. A new candidate point x2c is selected by drawing from
the proposal distribution, and the acceptance probability α(x1, x2c)
calculated using the formula

α(x1, x2c) = min

[
1,

π (x2c)q(x1|x2c)

π (x1)q(x2c|x1)

]
. (10)

The candidate point is accepted with probability α(x1, x2c) and x2

is set equal to x2c, or rejected and the point left unchanged (x2 =
x1).

The ratio q(x1|x2c)/q(x2c|x1) in equation (10) represents the prior
which we assume to be lognormal.

3.3 MCMC applied to the semi-analytic model

Implementing the MCMC sampling approach on the SA model
parameter space raises considerable issues related not only to the
copious amount of I/O (the original recipe reads in the full Mil-
lennium dark matter trees), but also to the volume of calculations
required to follow the evolution of over 20 million galaxies in a
cosmological volume, through more than 50 redshift slices. At each
MCMC step, the SA model needs to be run with the proposed set
of parameters, to compute the acceptance probability by comparing

the outputted galaxy properties with the observational constraints.
The size of the calculation and the number of steps required for
convergence make it unfeasible to perform our analysis using the
full Millennium volume.

The structure of the Millennium Simulation provides a way to
circumvent this difficulty. The output is divided into 512 files which
have self-contained trees, with the galaxies on each treated indepen-
dently. We choose to perform our analysis in a single file with a mean
density and luminosity function analogous to the full Millennium
box. This assures that the parameter study done on it is representa-
tive of the full data set. Only the largest galaxies with stellar masses
greater than about 1011 h−1 M� are not properly sampled this way.

For our best-fitting parameters, we rerun the SA model on the
full simulation: these results are presented in Section 5.

4 IN D I V I D UA L O B S E RVAT I O NA L
C O N S T R A I N T S

4.1 Overview

The traditional SA approach is to adjust parameters only considering
observations at redshift zero. Following this philosophy, we select
three independent and local observational data sets: the K-band
luminosity function, the colour–stellar mass relation and the BH–
bulge mass relation, to fully constraint the six parameters defining
galaxy masses and formation rates of stars and AGN.

In this section, we present the observations used in our analysis
and show how each individual property constraints the different pa-
rameters by running the MCMC sampling with one observational
data set at a time. The output is analyzed using GETDIST, part of the
COSMOMC software package (Lewis & Bridle 2002), adapted to pro-
duce one- and two-dimensional maximum likelihood (profile) and
MCMC marginalized (posterior) distributions. For the independent
observational properties, we use different statistical tests to assess
the likelihood of the model, reflecting the observational uncertainty
and the nature of the relation under study.

Running our sampling technique with separate observational data
sets one at a time allows us to gain insight on which degeneracies
between the different parameters are broken by each additional
observation. We start by studying the influence of varying the pa-
rameters on the final K-band luminosity function.

4.2 The K-band luminosity function

Despite being one of the most fundamental properties of a galaxy,
stellar mass is not easily derived from observations. To get estimates
for this quantity from the observed luminosities, it is necessary to
assume mass-to-light (M-L) ratios based on stellar population syn-
thesis models that include still poorly understood dust corrections,
IMFs and metallicity evolution. On the other hand, SA models di-
rectly predict mass, but to produce observable luminosities the same
crudely established process must be taken in the reverse direction.

This difficulty leads us to use the K-band luminosity function.
The K band is known as a good mass indicator as it is relatively
unaffected by dust and represents a fair sample of the stellar popula-
tion. We combine three observational studies (Cole et al. 2001; Bell
et al. 2003; Jones et al. 2006), respectively, from 2dFGRS, 2MASS
and 6dFGRS, from which we build a final luminosity function. The
final data points are given by the average of the maximum and min-
imum number density estimates in each magnitude bin, with errors
σ i equal to half the difference between them.
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Figure 1. The galaxy K-band luminosity function at z = 0 for the DLB07
model (dashed red line) and our best-fitting model (solid red line). The
model predictions are compared with observations from Cole et al. (2001),
Bell et al. (2003), Jones et al. (2006) combined to produce a new luminosity
function reflecting the scatter between them.

The comparison between the K-band luminosity function from
the original DLB07 model (using the published parameter values)
with the observations is shown in Fig. 1. The original model already
shows good agreement with the combined data except for the faint
end, overpredicting the number of dwarfs galaxies with magnitudes
fainter than K ≈ −22.

To compute the likelihood of the model for the K-band luminosity
function, we use the chi-square probability function where

χ 2 =
∑

i

(Ni − ni)
2

σ 2
i + ni

(11)

is summed over the observational bin range plotted in Fig. 1, and
Ni and Ni represent the number of observational and simulated
galaxies in each bin, respectively.

In Fig. 2, we plot the 1σ and 2σ preferred values from the MCMC
(solid lines) and the maximum likelihood value sampled in each bin
(colour contours), for the subset of the original parameters (with
values plotted in log space) constrained only by the observational
K-band luminosity function.

In interpreting this and future plots, one should bear in mind
that the contours follow the MCMC sampling in parameter space,
which should trace out the relative likelihoods of different regions
(the posterior distribution). The colours represent the maximum
likelihood projected along all the hidden dimensions in the plot
(profile distribution). Usually, as in this case, the two match fairly
well. The exceptions arise when there is a high-likelihood region
that only occupies a small volume of parameter space.

The two lower panels of Fig. 2 show that the three parameters
controlling the SN feedback are all positively correlated with each
other, in a way that allows us to learn how the K-band luminosity
function constrains the feedback model. To do this, we rewrite
equation (4) as

	mejected

	m�

= εhalo
V 2

SN

V 2
vir

(
1 − εdisc

εhalo

V 2
vir

V 2
SN

)
, (12)
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Figure 2. Correlations between the six parameters analysed in our study
only constrained by the χ2 test on the K-band luminosity function. For the
values of the parameters plotted in log space, the solid contours represent
the 68 and 95 per cent preferred regions from the MCMC (the posterior
distribution) and the colours the maximum likelihood value sampled in each
bin (the profile distribution). The colour scale is normalized by the maximum
likelihood value of 0.87. White regions in the plot represent regions either
with very low likelihood, less than 0.1 per cent of the peak, or that have not
been visited by the MCMC chain.

from which we see that the amount of ejected gas per unit mass of
star formation drops to zero for haloes with virial speed greater than

Vvir,0 =
(

εhalo

εdisc

) 1
2

VSN. (13)

In our analysis, this cut-off is represented by the line of maxi-
mum likelihood in the lower-left panel of Fig. 2 and corresponds to
vvir ≈ 140 km s−1, which translates into M star ≈ 1010.5 M� and
MK ≈ −23. This cut-off virial velocity is lower than in DLB07,
which means that our SN feedback stops being effective at fainter
magnitudes, allowing more stars to form in L� galaxies. Since we
need to assume a stronger SN feedback to decrease the faint end of
the luminosity function, this is the only way to assure that enough
stars will still form in brighter galaxies.

For a given value of V vir,0, the amount of ejected gas is propor-
tional to εhalo, with the maximum likelihood solutions showing a
linear relation γ ej ∝ εhalo. This corresponds to a roughly constant
amount of gas being held in the external reservoir: in a steady state
the external gas content is proportional to the ratio of the influx and
outflux rates. Our regions of high likelihood represent a consider-
ably higher amount of gas being in the external reservoir than in
DLB07 with a corresponding reduction in star formation in faint
galaxies.

The value of εdisc, controlling the reheating of cold to hot gas, has
a minor impact except as a way of controlling the critical magnitude
limit above which feedback is ineffective. Presumably cooling times
are so short in galaxies below the magnitude limit that any gas that
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is reheated will quickly cool down again. One might have expected
that it could be used to control the stellar mass fraction in large
galaxies where the cooling time is relatively long; however this
does not seem to be the case.

The AGN feedback parameters, shown in the top-left panel of
Fig. 2, have a broader acceptable region but also show a high-
likelihood spine that runs diagonally down from top left to bottom
right. This can be explained by combining equations (6), (7) and
(8) to obtain the mechanical heating rate produced by this process,

LBH ∝ fBH kAGN mcold fhot. (14)

Thus, for given cold and hot gas fractions in the galaxies, the line
represents a single heating rate. This degeneracy is broken if the
BH masses are used as a constraint (Section 4.4), since their growth
is mainly dominated by the quasar mode.

The maximum likelihood channels described above all have star
formation efficiencies of εSF ≈ 0.04, similar to that of DLB07. This
reinforces the conclusion that the SN and AGN feedback parame-
ters act to maintain a constant mass of cold gas available for star
formation.

Apart from the main band discussed above, the two upper panels
in Fig. 2 show alternative regions of acceptable likelihood. These
have lower star formation efficiencies, requiring a greater mass of
cold gas. This, in turn, leads to a smaller product of f BH and kAGN. We
do not dwell on these solutions here as they seem to be ruled out by
other observations: in particular they result in excessive BH–bulge
mass ratios.

4.3 The colour–stellar mass relation

The star formation rate is another essential quantity in characteriz-
ing the galaxy population. Although this property can be directly
extracted from the models, it is not easily comparable with observa-
tions. While in the models, the mass transformed into stars at each
time-step is computed, only indirect observational estimators are
available.

Galaxy colours are one such indirect measure of the recent star
formation history of galaxies, with a clear bimodality between an
old, passively evolving red population, and a young star-forming
blue sequence (e.g. Kauffmann et al. 2003; Brinchmann et al. 2004;
Baldry et al. 2004).

The top panel of Fig. 3 shows the colour–magnitude relation
for the DLB07 model. Although it has some problems in correctly
predicting the slope and fraction of each population in some mass
ranges (see Baldry et al. 2006; Weinmann et al. 2006a), it clearly
reproduces the bimodality.

To test the correctness of model colours, we divide the galaxies
into the two populations using the selection criteria in Weinmann
et al. (2006a), (g − r) = 0.7 − 0.032(Mr − 5 log h + 16.5),
converted into a cut on the colour–stellar mass relation at redshift
zero, (B − V ) = 0.065 log (M�h

2/ M�) + 0.09 and shown as the
solid line in the upper panel of Fig. 3. The conversion from the
g − r to the B − V colour was done following Fukugita et al.
(1996), g − r = 1.05(B − V ) − 0.23. The fraction of red galaxies
for different mass bins is then compared with observations from
Baldry et al. (2004) as shown in the lower panel. The observational
masses based on the ‘diet’ Salpeter IMF (Bell et al. 2003) were
reduced by 0.15 dex to agree with the IMF assumed in our SA model
(Chabrier 2003). The fact that a different blue band was used in the
observational colour cut (u− r instead of our converted g − r) could
potentially lead to discrepancies in the number of objects identified
in each population if the two Gaussian distributions defining each

Figure 3. Comparison between model and observational colours. The upper
panel shows the DLB07 B–V colour–stellar mass relation, with the solid
line representing the empirical division between populations in the model.
On the bottom panel, the fraction of red galaxies as a function of stellar
mass from DLB07 (red open circles) and our best-fitting model (red filled
circles) is compared with observations from Baldry et al. (2004) (filled blue
squares).

population significantly overlap. However, as Fig. 3 shows, there is
a clear division between red and blue galaxies in the B − V CM
diagram for model galaxies. In this way, any small differences in
the number of red galaxies caused by the different colour cut used
should be well within the 0.05 error assumed for the model fraction.

Following Croton et al. (2006), we take the resolution limit for
model colours to be at a stellar mass of approximately 109.5 h−2 M�,
above which the model reproduces the red fraction reasonably well,
with some minor excess for galaxies above L�.

The agreement between model and observational colours is cal-
culated using a maximum likelihood method with a constant value
for the errors in the model (σ model = 0.05) given by the variation in
the fraction of red galaxies in a sample of 20 sub-volumes of the
Millennium Simulation, similar to the one used in our analysis.
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Figure 4. As for Fig. 2, but constrained only by the maximum likelihood
test on the fraction of red galaxies. The colour scale is normalized by the
maximum likelihood value of 0.89.

We assume that both model and observational values are Gaussian
distributed around the true fraction F, with a likelihood

L(Colour) = exp

{
− (fmodel − F )2

2σ 2
model

− (fobs − F )2

2σ 2
obs

}
(15)

that has a maximum value

L(Colour) = exp

{
− (fmodel − fobs)

2

2
(
σ 2

model + σ 2
obs

)
}

. (16)

The DLB07 model, tuned to reproduce a different set of observa-
tional colours (the red and blue luminosity functions from 2dFGRS),
correctly predicts the fraction of red galaxies at low and high
masses but overpredicts the number of red galaxies at intermediate
masses.

In Fig. 4, we plot the allowed regions in likelihood and posterior
space. Perhaps surprisingly, the colour constraint picks out a similar
relationship between εhalo and εdisc as does the K band. This is
because it also requires a cessation of SN heating in galaxies with
virial speeds above 140 km s−1 which would otherwise have an
excessive red fraction.

The constraint again requires a constant mechanical heating from
AGN feedback (as shown by the line of maximum likelihood in the
upper-left panel of the figure) which is responsible for the elimina-
tion of blue galaxies at high masses. The line of highest likelihood
lies slightly below that seen for the K-band constraint. Along with
this, the upper-right panel of the figure shows a preference for
a slightly lower star formation efficiency. However, in each case
there is an acceptable region where the allowed parameter spaces
overlap. This changes when we move to our third constraint.

4.4 The BH–bulge mass relation

We have seen in the previous section that the power of the radio-
mode AGN feedback depends upon the product of the quasar and
radio-mode growth factors. However, the mass growth of the BHs
is dominated by the quasar mode alone. We can therefore use the
BH–bulge mass relation to break this degeneracy.

If we require SA galaxies to be constrained solely by this relation,
then the other parameters in the model will be free to shift into
implausible values allowing any point in parameter space to have a
reasonable likelihood. For this reason, we require model galaxies to
follow both the BH–bulge mass relation and the K-band luminosity
function of bright galaxies (i.e. the host galaxies of these BHs).

The BH and bulge masses for the original model are plotted in
Fig. 5 and compared with local observations from Häring & Rix
(2004). The model galaxies fall on top of the observational best
fit (given by the blue line), with the scatter in the relation also
reproduced.

In order to test the SA results against observations, we divide
the data into two bins (perpendicular to the observational best
fit), represented by the solid black lines on Fig. 5, 15.2 < mBH +
0.90 mbulge ≤ 17.75 and 17.75 < mBH + 0.90 mbulge, and for each
of the bins we compute the binomial probability for the observed
distribution of mass ratios above and below the best-fitting line,
given the fractional distribution from the model galaxies:

L(BH−bulge) =
{

2Ip(k, n − k + 1), Ip ≤ 0.5

2(1 − Ip(k, n − k + 1)), Ip > 0.5
(17)

where k is the number of observed galaxies above the best fit in
each bin, n is the total number of observed galaxies in the same
bin and p is the equivalent fraction, k/n, for the model galaxies
in the bin. I p(a, b) is the incomplete beta function as defined
in Press et al. (2007). The two formulae are required since we
need to exclude both extremes of the distribution, correspond-
ing to an excess of points both above and bellow the best-fitting
line.

Figure 5. The BH–bulge mass relation for DLB07 (contours and dots)
is compared with local observational data from Häring & Rix (2004) (blue
crosses). The best fit to the observational data points is given by the blue line
running from bottom left to top right, while the two black lines perpendicular
to this relation divide galaxies into the two mass bins used to compute the
likelihood.
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Figure 6. As for Fig. 2, but constrained only by the binomial test on the
BH–bulge mass relation and by the K-band luminosity function of galaxies
above Mk =−23. The colour scale is normalized by the maximum likelihood
value of 0.86.

In Fig. 6, we plot the posterior and profile likelihood distributions
of the parameters constrained only by this binomial test and the
K-band luminosity function of galaxies brighter than Mk = −23.

It is immediately apparent that the region of high likelihood is
much smaller for this test than for the first two constraints. More-
over, this region corresponds to high values for the SN feedback
parameters, combined with a low AGN feedback efficiency. As
such, it is incompatible with the acceptable regions in those previ-
ous tests.

However, there is a lower likelihood, but still acceptable (likeli-
hood >0.1) region that extends towards lower SN and higher AGN
parameters. As the MCMC contours show, this occupies a much
larger volume of parameter space than the high-likelihood peak
(and so, in a Bayesian sense, the true solution is more likely to be
found in the former than the latter).

Looking at the upper-left panel in the figure, we can see that the
acceptable region runs from bottom left to top right, perpendicular
to the lines seen in the previous two tests. The BH–bulge mass ratio
thus breaks the degeneracy in the AGN parameters.

5 C O M BIN ED OBSERVATIONA L
C O N S T R A I N T S

The likelihood of the model for a given point in parameter space is
computed by taking the product of the three independent observa-
tional constraints described in the previous sections.

π (xi) = L(K−band) × L(colour) × L(BH−bulge). (18)

This quantity is calculated at each MCMC step and used to derive
the acceptance probability (equation 10). We run our sampling over
approximately 30 000 steps, excluding an initial burn-in to assure
the independence of the final results from the starting point of the
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Figure 7. As for Fig. 2, but constrained by all three observational proper-
ties: the K-band luminosity function, the fraction of red galaxies and the
BH–bulge mass relation. The colour scale is normalized by the maximum
likelihood value of 0.037.

chain. The output is then analysed using getdist, part of the cosmomc
software package (Lewis & Bridle 2002). As for the individual con-
straints, the code is adapted to produce one- and two-dimensional
maximum likelihood (profile) and MCMC marginalized (posterior)
distributions, best values and confidence limits for the parameters,
convergence statistics for the chain and correlation statistics for
each parameter.

Although, in our sampling we do not impose rigid limits on
the parameter range, Fig. 7 shows that the preferred regions are
well-constrained. Fig. 8 shows the profile distribution for each pa-
rameter, marginalized over all others. Unfortunately, the maximum
likelihood is just 0.037, thus the best-fitting solution is incompatible
with the three combined observations at the 2σ level.

The principal cause of the low likelihood is an incompatibility
between the BH–bulge mass constraint and the K band and B − V

colours. As discussed in Section 6, this might be caused by obser-
vational uncertainties in the BH and bulge masses or might reflect
a deficiency in the BH growth model, which is still very simplistic.
Nevertheless, observational uncertainties, principally that associ-
ated with stellar population synthesis modelling, make it premature
to conclude that the DLB07 formalism is ruled out.

5.1 Best-fitting parameters and confidence limits

The best fit and confidence limits for the six free parameters, to-
gether with the published values from DLB07, are shown in Table 2.
All the parameter values in the original model fall within our 2σ re-
gions except for the SN disc reheating efficiency, which we require
to be larger than before.

Both the star formation efficiency and the AGN quasar mode
parameters from DLB07 closely match our best-fitting values, while
our AGN radio-mode efficiency is slightly lower than before.
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Figure 8. Likelihood distributions for the six parameters studied. The solid
lines represent the maximum likelihood in each bin marginalized over the
other dimensions in parameter space.

For the SN feedback parameters, the original halo ejection effi-
ciency, εhalo, is below our best fit, whereas the original gas reincor-
poration efficiency, γ ej, is slightly higher. This combination acts so
as to produce a higher fraction of gas trapped in the external reser-
voir with the new parameters, and hence a smaller mass of cold gas
available for star formation in dwarf galaxies.

The DLB07 SN reheating efficiency, εdisc, is considerably lower
than our best fit. As discussed earlier, the main effect of this is
to raise the ratio εdisc/εhalo with the new parameters and hence,
from equation (13), to lower the critical virial speed above which
feedback is ineffective.

5.2 Galaxy properties in our best-fitting model

The MCMC parameter estimation was carried out using only one
data-file representing 1/512 of the Millennium volume. In this sec-
tion, we present results using our best-fitting parameters in the full
volume.

5.2.1 Galaxy luminosity functions

The requirement that star formation be inefficient in low-mass
galaxies is a common problem to both sets of SA models built
upon the Millennium Simulation. There is an apparent excess of
dwarf galaxies that can be seen in the K-band luminosity function
in both Croton et al. (2006) and Bower et al. (2006).

In the left-hand panel of Fig. 9, the K-band luminosity func-
tions from DLB07 and our best-fitting model are plotted against the

Table 2. Statistics from the MCMC parameter estimation for the six parameters selected from the original model. The best fit and
confidence limits (derived from the colour contours in Fig. 7) are compared with the published values from DLB07.

DLB07 Mean Lower (2σ limit) Lower (1σ limit) upper (1σ limit) Upper (2σ limit)

αSF (SFE) 0.03 0.039 0.020 0.020 0.11 0.13
kAGN (AGN radio) 7.5 × 10−6 5.0 × 10−6 2.4 × 10−6 2.4 × 10−6 9.7 × 10−6 1.1 × 10−5

f BH (AGN quasar) 0.03 0.032 0.014 0.014 0.103 0.115

εdisc (SN reheating) 3.5 10.28 4.43 4.52 24.37 24.37
εhalo (SN ejection) 0.35 0.53 0.26 0.26 1.17 1.17
γ ej (SN reincorporation) 0.5 0.42 0.08 0.08 0.73 0.79

Figure 9. Comparison of the predicted K-band (left-hand panel) and bJ-band (right-hand panel) luminosity functions at z = 0 from DLB07 (dashed red line)
and our best-fitting model (solid red line). On the left-hand panel, the data points represent the observations used to constrain the luminosities of galaxies in
our MCMC parameters estimation (Cole et al. 2001; Bell et al. 2003; Jones et al. 2006). On the right-hand panel, the bJ-band luminosity function is compared
with observations from 2dFGRS (green filled squares) and 6DFGS (blue open circles), respectively Norberg et al. (2002) and Jones et al. (2006).
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observational data set used to constrain the sampling. As discussed
in Section 4.2, to get a good agreement with observations, the model
needs to form considerably fewer stars in low-mass galaxies. This
is achieved by reducing the amount of cold gas available for star
formation by increasing the SN heating efficiency and decreasing
the amount of gas reincorporated at each time-step. To assure that
enough L� galaxies are produced, the virial velocity cut-off above
which SN feedback is ineffective is lowered, by raising εdisc relative
to εhalo (equation 13).

In the right-hand panel of Fig. 9, the best-fitting model seems to
show poorer agreement with the bJ band than the original DLB07.
The new fit does reproduce the number density of dwarf galaxies
accurately, but shows a large excess around L�. This is partly a
reflection of the excess seen in the K band in the same region,
but has a large magnitude. Given the good match to the colour
fraction, this seems surprising and points to inconsistencies and/or
uncertainties in the conversion of mass to luminosity via stellar
population synthesis (see Section 5.3).

5.2.2 Galaxy colours

In Fig. 10, we show the predicted galaxy colours in our best-fitting
model, the B − V colour–stellar mass relation on the top panel and
the fraction of red over the total number of galaxies as a function of
stellar mass in the bottom panel. Our best fit correctly reproduces
the fraction of red galaxies by slightly increasing the number of
blue galaxies around L� compared to DLB07.

The colour–stellar mass relation also shows improvements, keep-
ing the bimodality between the red and the blue galaxies, but in-
creasing the slope of each population as suggested by observations.
Nevertheless, near the lower-mass limit we impose in our study a
population of red dwarfs starts to emerge, representing the highest
number density peak in the red population. This is in disagree-
ment with observations, where the majority of the red galaxies are
massive, and the dwarfs are predominately blue. We address this
problem, and explore possible solutions in Section 6.

5.2.3 The BH–bulge mass relation

The best-fitting BH–bulge mass relation is almost unchanged from
that shown in Fig. 5 and so we do not repeat it here. There is
enough freedom in the model to allow the AGN parameters to
adjust themselves to recover the correct BH masses, despite the
differences in the SN parameters between DLB07 and out best fit.

5.3 The galaxy stellar mass function

As discussed in Section 4.2, the stellar mass function is one of the
most fundamental properties of a galaxy population, but it is dif-
ficult to derive accurately from observations. In Fig. 11, we show
how our best-fitting model and DLB07 masses compare with ob-
servationally derived stellar mass functions from Bell et al. (2003)
and Baldry, Glazebrook & Driver (2008). The latter is one of the
most robust mass derivations, using the New York University Value-
Added Galaxy Catalogue that combines four different methods for
determining galaxy masses from Sloan Digital Sky Survey data.
The error bars in the figure span the maximum and minimum mass
estimates from that analysis.

After all the data sets are converted into the same IMF (that
of Chabrier 2003), the comparison between our best-fitting model
and the masses derived from Bell et al. (2003) in Fig. 11 shows

Figure 10. The top panel shows the B − V colour–stellar mass relation for
the galaxies in our best-fitting model. The solid line represents the division
between the red and blue populations in Weinmann et al. (2006a). The
predicted fraction of red galaxies as a function of stellar mass is shown in
the bottom panel. The original DLB07 model (open red circles) is compared
with our best-fitting model (filled red circles) and observational data from
Baldry et al. (2004) (filled blue squares).

the same behaviour as the K-band luminosity function. With our
more effective SN feedback, the excess of dwarf galaxies largely
disappears, but there is a slight excess of L� galaxies. Small dif-
ferences might arise when comparing both the k-band and stellar
mass functions from the model and a specific observational data set,
even though similar stellar population synthesis models were used.
This is because, to convert stellar mass into luminosity, one should
have knowledge about the age and metallicity of the galaxy stellar
population. These quantities are directly available in the model, but
in observations they are difficult to derive and are subject to large
uncertainties.

Also shown in Fig. 11 is a comparison of the predicted masses
with data from Baldry et al. (2008). A systematic difference between
the model and the data is evident, with the former predicting a much
larger number of galaxies on and above L�. While the horizontal
error bars plotted in Fig. 11 for Baldry et al. (2008) reflect only the
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Figure 11. Comparison for the predicted stellar mass function at z = 0
from DLB07 (dashed red line) and our best-fitting model (solid red line)
with observations from Baldry et al. (2008) (blue open circles) and Bell
et al. (2003) (green filled squares).

bin size, the authors refer to differences as large as 0.15 dex in mass
estimates from the different methods. Another recent work (Conroy,
Gunn & White 2008) points to even larger errors of up to 0.3 dex
that may result from imprecise modelling of key phases of stellar
evolution. If these uncertainties lead to the observationally derived
masses of large galaxies being underestimated by about 0.15 dex,
then our best fit and observations from Baldry et al. (2008) would
be in extremely good agreement throughout the whole mass range.

The differences between data sets highlight the need for caution
when galaxy formation models are compared with observations. In
principle, one should expect the properties and allowed parameter
ranges to change if either the stellar population synthesis or the dust
model needs to be readjusted. In this paper, we have chosen to fix
these so as to focus our study on the parameters controlling the most
basic properties of the SA model: star formation and feedback.

6 D I S C U S S I O N A N D C O N C L U S I O N S

Since they were introduced as a new technique to understand galaxy
formation (White & Rees 1978; Cole 1991; Lacey & Silk 1991;
White & Frenk 1991), SA models have always lacked a proper
statistical analysis of the allowed range of their free parameters and
a consistent way to test the goodness of the fits produced.

To overcome this weakness, we have implemented an MCMC
parameter estimation technique into the DLB07 SA model, to ob-
tain the best values and confidence limits for the six free parameters
in the model responsible for shaping the stellar mass function and
for the colours of galaxies. Comparing the model with three dif-
ferent observational constraints separately: the combined K-band
luminosity function from Cole et al. (2001), Bell et al. (2003),
Jones et al. (2006), galaxy colours from Baldry et al. (2004) and
the BH–bulge mass relation from Häring & Rix (2004), we are able
to identify which particular parameters (and hence which galaxy
formation processes) are responsible for each individual property
and which show correlations and degeneracies.

Combining the three observational tests, we are able to fully con-
strain the model parameters, obtaining a best fit and confidence
limits within the very limited region of acceptable likelihood. Our

best model is given by: αSF = 0.039+0.091
−0.019, kAGN = (5.0+6.0

−2.6) × 10−6,
f BH = 0.032+0.083

−0.018, εdisc = 10.28+14.09
−5.85 , εhalo = 0.53+0.64

−0.27 and γ ej =
0.42+0.37

−0.34. As shown in Table 2, all the parameters in the origi-
nal model, except the SN reheating efficiency, fall within our 2σ

confidence limits. Our best fit maintains the values for the star
formation efficiency and for the AGN quasar mode parameters,
while increasing the SN gas reheating and ejection and decreas-
ing the AGN radio-mode and gas reincorporation efficiencies. For
our preferred set of parameters, the model has a likelihood of
π (xi) = L(mass) × L(colour) × L(BH−bulge) = 0.037. This value means
that the best-fitting solution is incompatible with the three combined
observations at the 2σ level.

In this paper, we have used the Millennium Simulation which
adopts a �CDM cosmology. It is possible that the Universe may be
better described by an alternative cosmology with fewer low-mass
haloes. However, our purpose here is to try to find an astrophysical
solution that is compatible with �CDM.

As discussed in previous chapters, observational uncertainties,
principally that associated with stellar population synthesis and dust
modelling, make it premature to conclude that the DLB07 formal-
ism is ruled out: shifting the observed BH/bulge mass ratio by 0.15
dex raises the best-fitting likelihood to 0.07, which is marginally
acceptable. Nevertheless, the apparent incompatibility between the
BH–bulge mass relation and the other constraints indicates that the
BH growth treatment in the model might be too simplistic, in par-
ticular by assuming that there is no feedback from the quasar mode,
when it seems to be required to reproduce the X-ray luminosity
function of haloes (Bower et al. 2008; Short & Thomas 2008). As
discussed below, some additional recipes might also need to be in-
cluded for the model to better reproduce observational luminosities
and colours, which could in principle increase the likelihood of the
best-fitting model.

We produce a K-band luminosity function for our best param-
eter values that improves the agreement with observations at the
low-luminosity end. This is achieved by taking a higher heating
efficiency from SN and a lower reincorporation rate of gas ejected
from the halo. This reduces the amount of cold gas available to form
stars, avoiding the excess of faint galaxies in the original recipe.
More effective SN feedback has been proposed in the past. For ex-
ample, Bertone et al. (2007) studied a wind model that improved
the number density of dwarfs for both the mass and luminosity
function while improving the distribution of metals. However, the
high value of ejection that is required by our model seems to be
unrealistic when compared with observations (Martin 1999). This
indicates that additional processes such as disruption of satellites
through tidal effects might need to be included (Bullock, Kravtsov &
Weinberg 2001; Taylor & Babul 2001; Benson et al. 2002; Monaco
et al. 2006; Weinmann et al. 2006b; Murante et al. 2007; Henriques,
Bertone & Thomas 2008; Somerville et al. 2008).

For both the luminosity-function and colour constraints, the SN
reheating and ejection parameters are strongly correlated, which
we interpret as an upper virial velocity limit of 140 km s−1 for
galaxies that can eject mass via SN heating. Since we need to
assume a stronger SN feedback to decrease the faint end of the
K-band luminosity function, this relatively low value assures that
our SN feedback stops being effective for galaxies with masses
above M� ≈ 1010.5 M�. This is the only way to ensure that enough
stars will form in brighter galaxies, and also produces more blue
galaxies around L� than the original DLB07 parameters.

Significant correlations exist between the three parameters gov-
erning SN feedback, εdisc, εhalo and γ ej, even in the combined analy-
sis. This suggests that the model could be rewritten with one or two

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 535–547



546 B. M. B. Henriques et al.

fewer free parameters. However, this degeneracy could in principle
be broken if the metallicity of gas and stars were to be considered.

The model with the original DLB07 parameters correctly pre-
dicts the bimodality in the colour–stellar mass relation, however, it
has difficulties in matching the exact number of the blue and red
sequence galaxies. Our best-fitting model correctly predicts the rel-
ative fraction of galaxies in each colour population; however the
early cut-off on SN feedback leads to an excess of galaxies with
masses between 1010.5 and 1011.0 M�. Furthermore, as the original
model, it shows a large population of small red galaxies in the B −
V colour–stellar mass plot in contradiction with observations.

The problems with low-mass galaxy colours in SA models have
been identified in the past, particularly the excess of red dwarfs
(Baldry et al. 2006; Croton et al. 2006). Possible solutions might
include the delayed stripping of gas from satellites after their dark
matter halo is disrupted (allowing them to cool gas, form stars and
stay blue for longer; Font et al. 2008), or again, tidal disruption
of dwarfs, which would affect mostly red, satellite galaxies. This
would move them to even lower masses, below 109.0 M� (where an
upturn in the stellar mass function is seen) and produce intra-cluster
light (Weinmann et al. 2006b; Henriques et al. 2008; Somerville
et al. 2008).

The purpose of this paper is to show that MCMC parameter
estimation techniques, adapted from those used in cosmology, can
be used to map out likelihood contours in the parameter space of SA
models of galaxy formation. For this particular analysis, we chose
the formalism of DLB07, but the same method could equally be
applied to other models.

In the future, we would like to extend the method to undertake
model selection, providing an objective measure of the relative value
of models with different numbers of free parameters.
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