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A B S T R A C T

We have developed a new three-dimensional algorithm, based on the standard P3M method,

for computing deflections resulting from weak gravitational lensing. We compare the results

of this method with those of the two-dimensional planar approach, and rigorously outline the

conditions under which the two approaches are equivalent. Our new algorithm uses a Fast

Fourier Transform convolution method for speed, and has a variable softening feature to

provide a realistic interpretation of the large-scale structure in a simulation. The output

values of the code are compared with those from the Ewald summation method, which we

describe and develop in detail. With an optimal choice of the high-frequency filtering in the

Fourier convolution, the maximum errors, when using only a single particle, are about 7 per

cent, with an rms error less than 2 per cent. For ensembles of particles, used in typical N-body

simulations, the rms errors are typically 0.3 per cent. We describe how the output from the

algorithm can be used to generate distributions of magnification, source ellipticity, shear and

convergence for large-scale structure.

Key words: methods: numerical ± galaxies: clusters: general ± cosmology: miscellaneous ±

gravitational lensing ± large-scale structure of Universe.

1 I N T R O D U C T I O N

Procedures for the generation of cosmological N-body simulations

have become increasingly sophisticated in recent years. We have

now developed an algorithm for assessing in great detail, and with

considerable speed and accuracy, the effects of the large-scale

mass distributions within these simulations on the passage of light

from sources at great distances.

Our algorithm computes the nine components in three

dimensions of the second derivative of the gravitational potential

at a large number of locations within the volume of N-body

particle simulations. We refer to these components quite generally,

throughout this paper, as the three-dimensional shear matrix, or

individually as the shear components or values. However, in the

analysis of the computed data, for which the effects of lensing

along a particular line of sight are required, the two-dimensional

`effective lensing potentials' (see Section 5.3) are generated by

integrating the three-dimensional components along the line of

sight. These effective lensing potentials are used to construct the

Jacobian matrix (defined in Section 5.3), which is recursively

generated along the line of sight, and from the final Jacobian

matrix the magnifications and two-dimensional shear, which are

defined in Section 5.3, may be determined.

1.1 Previous work

There are numerous methods for studying the `weak' gravitational

lensing due to large-scale structure, the most common being `ray-

tracing,' in which individual light rays are traced backwards from

the observer, and the deflections occuring at each lens-plane are

calculated. The lens-planes are two-dimensional projections of the

mass content within a small redshift interval, usually equal to the

simulation box depth.

Schneider & Weiss (1988b) have used this method by shooting,

typically, 108 rays through the lens-planes to strike the source

plane within a chosen square region, called the detection field.

Each plane is divided into 512 pixels, typically, and the particles

(stars in this case) are categorized as near or far for computational

purposes. The deflection by stars further away than about 8 pixel

dimensions from the centre of each pixel is approximated in a

Taylor series, whilst the deflections due to the nearby stars are

computed individually. The rays are shot through a cylinder with a

radius such that the rays meet the source plane in or near the

detection field. They claim that the resulting amplification factors

are hardly affected by edge effects caused by strong lensing of
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rays outside the shooting cylinder, but which might strike the

detection field. The amplification factors are determined directly

from the mapping of the rays on to the pixels of the detection

field.

JaroszynÂski et al. (1990) evaluate the matter column density in a

matrix of pixels for each of the lens-planes, based on their

simulation boxes. By making use of the periodicity in the particle

distribution orthogonal to the line of sight, they are able to arrange

for each ray traced to be centralized within planes of one full

period in extent. In this way, the deflections on each ray take

account of all the matter within one complete period. They

calculate, not deflection angles, but the two two-dimensional

components of the shear (see Section 5.3), as ratios of the mean

convergence of the beam. To do this, they assume that the matter

in each of the 1283 pixels resides at the centre point of each pixel.

To follow the shearing across subsequent planes, they recursively

generate the developing Jacobian matrix for each ray, in

accordance with the multiple lens-plane theory (see Section 5.3).

Wambsganss (1990) uses the `ray-tracing' method to study

microlensing, Wambsganss, Cen & Ostriker (1998) use it with

cosmological N-body simulations, and Wambsganss et al. (1997)

use the method for studying the dispersion in type Ia supernovñ.

They randomly orient each simulation box, and project the matter

contained within each on to a plane divided into pixels. They

choose the central 8 h21 Mpc � 8 h21 Mpc region through which to

shoot rays, (h is the Hubble constant in units of 100 km s21

Mpc21), but account for the deflections of the rays in terms of all

the matter in the plane of 80 h21 Mpc � 80 h21 Mpc. However, to

speed up the computation, a hierarchical tree code in two

dimensions is used to collect together those lenses (pixels) far

away, whilst treating nearby lenses individually. The matter in

each pixel, which measures 10 h21 kpc � 10 h21 kpc, is assumed to

be uniformly spread. The multiple lens-plane theory (see Section

5.3) is used for large numbers of rays to compute the mappings of

images and sources, the distribution of magnifications, and

statistics of angular separations of multiple images.

Marri & Ferrara (1998) select a total of 50 planes, evenly

spaced in redshift space, between redshifts of z � 0 and z � 10.

Their two-dimensional matter distribution on each plane consists

of point masses without softening, so that their approach produces

very high magnifications (greater than 20) for each of their chosen

cosmologies, using the `ray-tracing' method.

Premadi, Martel & Matzner (1998) have used five different sets

of initial conditions for each N-body cosmological simulation, so

that the plane projections of each simulation box can be chosen

randomly from any one of the five, and then randomly translated,

using the periodic properties of each box. In this way they are able

to avoid correlations in the large-scale structure between adjacent

boxes. A considerable improvement to the `ray-tracing' method

has then been made. They solve the two-dimensional Poisson

equation on a grid, and invert the equation using a two-

dimensional Fast Fourier Transform (FFT) method to obtain the

first and second derivatives of the gravitational potential on each

plane. From these data, cumulative deflections and the developing

Jacobian matrix can be obtained, which provides the data for

determining overall magnifications.

An alternative to the conventional form of backwards `ray-

tracing' was introduced by Refsdal (1970), who used a forwards

`ray-tracing' method with calculations of the differential deflec-

tion of light rays around a central ray to determine the distribution

of magnifications.

Fluke, Webster & Mortlock (1998, and in preparation) have

developed the `ray-bundle' method. The principle here is to trace

the passage of a discrete bundle of light rays as it passes through

the deflection planes. The advantage of this method is that it

provides a direct comparison between the shape and size of the

bundle at the observer and at the source plane, so that the

magnification, ellipticity and rotation can be determined straigh-

forwardly. They shoot large numbers of bundles through the

planes to obtain the statistical distribution of magnifications in

different cosmological models.

A novel approach to weak gravitational lensing has been used

by Holz & Wald (1998). They lay down a set of spheres between

the observer and source, each containing an individual probability

distribution of matter, in which a `Newtonianly perturbed'

Robertson±Walker metric is used. A scalar potential, related to

the density perturbations, can then be evaluated, and this allows

integration along straight lines through each sphere, to determine

the angular deviations and shear.

Tomita (1998a) evaluates the potential at some 3000 positions

between the observer and a source at z � 5, by using the periodic

properties of each simulation cube to position it such that each

evaluation position is centrally placed in the appropriate cube. To

trace the paths of the light rays, they solve the null-geodesic

equations, and use an analytical expression to determine the

average potential through the interval between each pair of

evaluation positions.

1.2 Motivation

Our motivation for the development of an algorithm to apply in

three dimensions has stemmed from concern with possible

limitations in the two-dimensional planar approaches to weak

gravitational lensing. We therefore considered the following.

First, we wanted to investigate rigorously the conditions for

equivalence of results obtained from three-dimensional realiza-

tions and two-dimensional planar projections. We show in

Appendix B that the two-dimensional shear values at a point in

the planar projection of a mass distribution are equal to the

integrated three-dimensional values along the line of sight through

one period (or cube dimension), in general, only if the distribution

of mass is periodic along the line of sight, and the angular

diameter distances through the depth of one period are assumed to

be constant.

Secondly, we wanted a method which would unambiguously

provide accurate values for the shear components, as if the

contribution from all matter, effectively stretching to infinity, was

included. Errors may occur in other methods if the contribution

from matter within only a finite radius of the evaluation position is

counted. For example, whilst JaroszynÂski et al. (1990) include the

matter contained within a plane of one complete period,

Wambsganss (1990) and Wambsganss et al. (1997, 1998) intro-

duce a slight bias, because rays near the edge of their shooting

area are closer to the edge of the single period plane than rays near

the centre of the shooting area. We investigate how quickly the

shear component values converge to their true values, as increas-

ing volumes of matter are included surrounding the evaluation

position, and we report our findings in Section 4.

Thirdly, to achieve shear values consistent with those in a

realistic universe, it is necessary to deal with the `peculiar

potential,' f , which is related to the full gravitational potential, F,

through the subtraction of a term depending upon the mean

density. This approach, which we describe fully in Appendix A,

ensures that we deal only with light-ray deflections arising from
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departures from homogeneity; in a pure Robertson±Walker metric

we would want no deflections. The approach is equivalent to

requiring that the net total mass in the system be set to zero, so

that for every mass there is a balancing uniform negative

background mass. This net zero-mass requirement is achieved

very simply in systems of particles which are periodically

distributed in all dimensions, and we are therefore able to

accommodate it easily in our algorithm.

Fourthly, we wanted to be able to apply our algorithm to

cosmological simulations which were representative of the large-

scale structure in the universe, rather than distributions of point

masses. This has frequently been attempted by assuming each

particle to be softened with the profile of an isothermal sphere. We

wanted to improve on this by allowing the softening for each

particle to reflect the environment in which it is located, so that

large clusters and other dense structures dominate the light

deflections, whilst the effects of isolated particles are minimized.

This motivated us to consider the introduction of a variable

softening facility to our algorithm.

Finally, a three-dimensional approach allows the use of the

appropriate angular diameter distances at every single evaluation

position within the three-dimensional realization. The two-

dimensional methods discussed above necessarily assume that

all the lensing mass within a given plane is at the same angular

diameter distance, because the overall depth of the lens is

considered to be small compared with the observer±lens,

observer±source, and source±lens angular diameter distances.

However, the depth of a single simulation cube employed in weak

lensing (in our case 100 h21 Mpc) is not insignificant. By using

the `thin-plane approximation,' in which matter in a small redshift

interval is projected on to a plane, we are able to show that errors

may be introduced. It is not possible to quantify these errors in

general, because they will vary from simulation to simulation,

depending on the specific mass distributions. However, we show

in Section 4.2 that the scaling factors for the computed shear

components can vary by as much as 9 per cent through the

depth of those simulation boxes contributing the most to the

magnification.

The considerations above finally led us to develop an efficient

FFT program, whose data output could be manipulated with the

appropriate angular diameter distances at every evaluation point.

The primary output of the programme is the matrix of second

derivatives of the gravitational potential at each of the specified

evaluation positions within a periodic three-dimensional distribu-

tion of smoothed particle masses.

1.3 Outline of paper

In Section 2 we describe the general principles employed in the

standard particle±particle, particle±mesh (P3M) algorithm, and

then how it has been extended for the evaluation of the shear

components. We explain the introduction of variable softening

into the code, which allows each particle to be represented as a

distributed mass. This variable softening smooths away the high-

frequency information in very high-density clumps, thus

avoiding strong scattering, and also allows particles in low-

density regions to be spread more widely to give more realistic

density values.

In Section 3 we describe our testing procedures for the code.

The first of these compares the computed shear components at a

large number of points surrounding a single massive particle, with

values derived from the Ewald (1921) summation technique. The

second test compares values of the normalized trace of the shear

matrix with density values derived using an independent method, a

smoothed particle hydrodynamics (SPH) algorithm.

Section 4 emphasizes two advantages of our new algorithm.

First, we demonstrate the slow convergence of shear values to

their true values, as increasingly large volumes of matter are

included surrounding an evaluation position. This suggests the

need, in general, to include the effects of matter well beyond a

single period transverse to the line of sight. Secondly, we show

that, by considering all the matter in a cubic simulation to be at the

same angular diameter distance, sizeable errors may be introduced

to the absolute shear values, and to calculations of the

magnification along a line of sight.

Section 5 describes the cosmological N-body simulations we

are using for the application of the new algorithm, and explains

our choice of the appropriate minimum value for the variable

softening. The multiple lens-plane theory (described by Schneider,

Ehlers & Falco 1992) is summarized for the determination of

magnification distributions along large numbers of lines of sight

through the simulations. We then provide some preliminary results

to show the efficacy of the method. These include (a) plots of the

magnification as it develops along a line of sight, (b) values for the

shear and convergence in a given cosmological simulation, and (c)

distributions of the magnification due to weak lensing for isolated

simulation boxes. Finally, we outline our proposed future work,

which will link simulations together to provide a complete

realization from a distant source to an observer in the present

epoch. This will enable us to compare the results from different

cosmologies.

Section 6 summarizes our conclusions about the algorithm and

its applicability.

In Appendix A we describe how the peculiar potential relates to

that in a universe with large-scale homogeneity. We show how use

of the peculiar potential, which takes account of departures from

homogeneity through the subtraction of a term including the mean

density, allows the shear to be correctly computed.

In Appendix B we investigate rigorously the equivalence

between two-dimensional and three-dimensional periodic

approaches, in the absence of discrete angular diameter distances

within the realizations. The treatment details the conditions under

which the two approaches may be considered to be equivalent.

In Appendix C we summarize the Ewald (1921) summation

method, which we have used to assess the accuracy of our new

code. We describe the method in outline, and compare the

treatment with the P3M method. Finally, we develop the equations

for the summation method which we have used in the testing of

the results from our new algorithm.

2 I M P L E M E N TAT I O N

In this section we describe the numerical method used for

measuring the local three-dimensional shear in simulation data.

The technique is an extension of the standard P3M algorithm

familiar from cosmological particle codes. We begin with a brief

review of the P3M method, and then describe how it has been

extended for the shear calculation.

2.1 The P3M algorithm

The P3M algorithm was developed in the context of particle
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simulations of plasmas by Hockney, Eastwood and co-workers

(see Hockney & Eastwood 1988 for a full description) as an

efficient method for calculating the pairwise interactions of a large

number of particles. In the cosmological context, with the method

being used to calculate forces arising from a large number of self-

gravitating particles, the method has two important attractions.

First, for a nearly uniform distribution of particles, the computa-

tional cost is of order N log 2N, where N is the number of particles,

rather than the normal O(N2) scaling behaviour expected for a

naõve computation of the forces on N particles from each of their

�N 2 1� neighbours. The second attractive feature for cosmology

is that the method, in its standard form, has periodic boundary

conditions, and thus lends itself naturally to the simulation of a

small part of the universe with the remainder being approximated

by periodic images of the fundamental volume.

The key idea in the method is to decompose the pairwise

interparticle force into a long-range and a short-range component

which together sum to the required force. With a suitable choice of

the decomposition we can ensure that the short-range force is

compact (that is, it is non-zero only within a finite radius, i.e., the

`search radius'), and that the long-range component has a band-

limited harmonic content such that it can be accurately

represented by sampling with a regular grid of a convenient

mesh size. The total force is then accumulated on particles by

summing directly a contribution corresponding to the short-range

component of the force from nearby particles within the search

radius, together with the long-range component which is

interpolated from a smoothly varying force derived from the

regular mesh.

In practice, the calculation of the short-range force [from the

direct particle±particle (PP) sum over near neighbours] and the

long-range force [from the particle±mesh (PM) field calculation]

depend on each other only to the extent that the accumulated force

from the two should sum to the required total force. The two

calculations may be performed in either order: here we shall

describe the PM calculation first.

The heart of the PM calculation is the solution of Poisson's

equation on a grid via a rapid elliptic solver; the method used here

is FFT convolution. A mesh-sampled density is obtained by

smoothing the particle distribution on to a regular grid with an

appropriate kernel. The properties of the kernel are chosen to filter

the high frequencies present in the distribution so that the

smoothed distribution may be adequately sampled by the mesh.

The mesh potential is then obtained from the mesh density by FFT

convolution. An advantage of using an FFT method is that it is

possible to substantially reduce translational and directional errors

in the mesh-computed quantities by judicious adjustment of the

Fourier components of the Green's function. For the standard

force calculation, the components of the Green's function are

optimized such that the rms deviation of the computed force from

the desired force is minimized. Full details of these techniques

may be found in Hockney & Eastwood (1988). A key feature of

the method is that the Fourier-transformed density field may be

smoothed by using a high-frequency filter. This suppresses

aliasing and leads to a more accurate pairwise force; that is, one

which has less positional and rotational dependence relative to the

grid.

Derivatives of the potential may then be obtained at mesh-

points using standard finite-difference techniques. A 10-point

differencing operator is used here to minimize directional errors in

the computed differences (see Couchman, Thomas & Pearce

1995). Values of the potential and its derivatives at arbitrary points

in the computational domain are then obtained by interpolation

from the mesh values. (Using the same kernel for interpolation as

was used for particle smoothing ensures that particles do not

experience self-forces in the standard P3M method.)

The accumulation of the PP component of the force on a

particle from near neighbours is achieved by regridding the

particles on to a mesh which has a cell size such that the side is

equal to the radial distance at which the short-range force falls to

zero. This mechanism enables the neighbours contributing to the

short-range force to be found efficiently by searching over the cell

in which the particle in question lies and its 26 neighbouring cells.

A disadvantage of this technique is that as particle clustering

develops in a simulation the average number of neighbours rises,

causing the method to slow as the number of PP contributions

which must be computed increases. A technique to overcome this

deficiency in simulation codes has been developed (Couchman

1991), but the problem will not be of concern in this paper where

we shall be concerned only with limited clustering.

The method leads to accurate interparticle forces with the force

error (arising from the mesh aliasing) being controlled by the

degree of high-frequency filtering employed in the Fourier

convolution. A greater degree of attenuation of the high-frequency

components reduces the error but leads to a `smoother' mesh

force. This requires that the direct-sum search be performed out to

larger radii, which in turn requires a search over a greater number

of particles, leading to a slow-down in the execution of the code.

The method may be described schematically in the following

terms. Suppose that the total pairwise potential required is

w � w�r�, where r is the radial distance from a particle. Then

we compute this as w � wPP � wPM, where wPP�r� � 0 for r . rc

is the PP component, and wPM is the mesh part. The functional

form of w is Coulombic on large scales (neglecting for the

moment the effect of the periodic images), with perhaps a

softening at small scales to allow for the fact that each particle

may represent a very large astrophysical mass, and to ameliorate

certain numerical problems in the simulation code such as two-

body scattering.

2.2 Adaptation of the P3M algorithm for the calculation of

the shear components

The P3M method computes forces, or first derivatives of the

potential, f , at a point by splitting the contribution of the density

distribution into two components as described above. The

potential itself is also computed as a simulation diagnostic in

many standard P3M implementations using the same splitting

technique. In principle, any other non-local function computed

from the field may be treated in the same way, and this is the

approach taken here for the shear components, 2f /xixj. The

implementation details specific to the calculation of the shear

values will be discussed here.

The short-range part of the shear field at a point is accumulated

directly from neighbouring particles from the appropriate

Cartesian projections of the analytic function:

2f

xixj

� �
PP

�
X w 0PP

x
dij � w 00PP 2

w 0PP

x

� �
xixj

x2
; �1�

where the sum is over all neighbour particles, and x is the

separation of a neighbour particle from the point at which the

shear is desired. (We have used the prime notation to denote
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derivatives with respect to radial separation.) The short-range part

of the field may be computed to machine accuracy.

The long-range part of the shear field is derived by taking a

second difference of the force values as computed in the standard

P3M method. The only difficulty is that differencing the mesh

field magnifies the noise which is present as a result of aliasing.

Reducing this noise requires more filtering in the Fourier domain,

with a corresponding increase in the short-range cut-off, rc.

Optimization of the Green's function appropriate for the shear

calculation is done in a manner similar to that used for the force

calculation. We minimized the sum of the squares of the

deviations of all nine components of the shear, although a number

of other reasonable possibilities exist. Minimizing the deviation of

the diagonal components, for example, produced results that were

little different.

It would be possible to compute the mesh shear components by

inverse Fourier transform of 2kikj
~f �k� directly for each i, j such

that 1 # i # j # 3, thus avoiding the real-space differencing. It

would still be necessary to filter the field, however, and for the

differencing operator used, the very small increase in accuracy

would not justify the added computational cost of several further

FFTs.

2.3 Particle softening

An important feature of numerical particle codes is the use of

particle `softening'. The effect of this is that each particle in the

code represents not a point mass but a distributed mass with some

given (fixed) radial profile. Softening is introduced primarily to

avoid artificial (or numerical) relaxation, i.e., close two-body

encounters leading to spurious energy redistribution in the system.

Since in most simulations we are attempting to model the cosmic

matter density as a collisionless fluid, this is a useful approach.

(Note that the particle softening referred to here is distinct from

the high-frequency filtering, or smoothing, employed in the PM

part of the calculation.)

In numerical particle simulation codes it is usual to employ a

global softening for all particles (which may, however, vary in

time). As the particle distribution evolves and particles cluster the

low-density regions are represented by fewer particles. In a

simulation computing interparticle forces to evolve the distribu-

tion of particles, this is of little consequence. However, if we wish

to compute the shear values at some position on a ray passing

through a low-density region it may never come within the

softening of the widely spread particles in the region. Since we are

interested in the trace of the shear matrix, which is equivalent to

the density, this would suggest that the density at this point was

zero. (In fact, the density would be negative, since the total mass

in the periodic simulation cube must be zero.) This is unrealistic

and does not accurately represent the matter density in these

regions. Increasing the softening would ameliorate this situation in

the voids, but would smooth away the high-frequency information

present in regions where the particles have clustered into high-

density lumps.

The approach we have taken is to employ a variable softening,

such that a particle in a region of low particle density has a `size'

which is greater than that of a particle in a high-density region. We

have chosen a criterion similar to that used in hydrodynamic

simulations using the SPH method (e.g. Gingold & Monaghan

1977). Each particle is chosen to have a softening such that its

sphere of influence is proportional to the distance to its 32nd

nearest neighbour. Given these values, the code appropriately

modifies the short-range (PP) calculation to increment the shear

components at a given point, taking into account the varying sizes

of the neighbouring particles.

3 P E R F O R M A N C E A N D T E C H N I C A L

A S S E S S M E N T

3.1 Pairwise shear tests

A minimal check of the technique may be made by computing the

shear components at a large number of points surrounding a single

massive particle. This is a useful test, because the result is known

analytically and it provides an immediate assessment of the errors

present in the method.

The test was made as follows. A single massive particle was

placed at a random location in a mesh cell and the code used to

measure the shear components at 16 384 surrounding points

located randomly in direction and distributed in radius such that

there was an equal number of points per equal logarithmic

increment in radius. The test was then repeated a further 34 times,

using the same evaluation positions but different locations for the

test particle designed to sample adequately the mesh cell. The

shear components measured at each location were then compared

with the true values derived from the Ewald (1921) summation

technique as described in Appendix C. These comparisons are

plotted in Fig. 1.

Panel (a) of Fig. 1 shows the absolute value of the radial

component of the shear (solid line) as well as the fractional error

in this quantity (scattered dots). Panel (b) shows the same

quantities for the two transverse components. In both cases the

measured values have been multiplied by an appropriate power of

the separation, r, such that a pure Coulombic potential would

show no radial variation. For the filtering chosen, the maximum

error in these quantities is approximately 7 per cent, and occurs

near the mesh smoothing used. The values of the radial and

transverse components have been plotted as a series of dots, one

for each test separation, which merge into a solid line. The line

thickening around a separation of 0.05 reflects larger errors in

these quantities. At separations beyond about 0.3, the spread in the

values reflects the true anisotropy of the shear components. (Note

that the fractional errors remain small unless the quantity itself

becomes small.)

The test was performed using a mesh of 643 cells, but the errors

are essentially independent of the mesh size for typical values of

the softening. The leftmost dotted vertical line marks the size of

the mesh cell. The second dashed vertical line marks the size of

the neighbour search cell in the direct accumulation of the shear

components. The smoothness of the mesh-computed components

allows the search radius to be slightly smaller than twice the

softening (the radius at which the force would become

Coulombic), with an error no greater than that arising from the

mesh calculation. The resulting small discontinuity is just visible

in the radial component of shear in panel (a), and in panels (c) and

(d). The cyclic error at small separations arises because linear

interpolation into a look-up table is used for the short-range force.

The few points lying above the main scatter of errors in panel (b)

are due to one of the transverse components becoming very

small, with the consequence that the fractional error can become

large. The rms error in our test on a single particle is less than 2

per cent.

Panel (c) plots the absolute value of the trace of the Ewald-

computed shear matrix and the fractional error of the computed
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trace values. The particle softening chosen for this test was 0.002

in units of the box side dimension and, because of the definition of

the particle softening employed, this corresponds to the particle

having a radial extent of 0.004. The true value of the trace for

smaller separations thus reflects 4p times the density of the

particle as required by Poisson's equation. At larger separations

the true density is 21 (since the total mass in the system has to be

zero), and thus the Ewald-computed shear is 4p. Large errors

occur in the trace values, simply because the shear values

individually are many orders of magnitude larger than 4p and

each is in error by a few per cent; we thus cannot expect the sum

of these large values to cancel to high precision to give the

required result. This fact was one of the primary motivations for

using a variable softening in which every position at which the

shear was measured would lie within the effective radius of some

particle. In this case we may expect that the computed values of

the trace will have roughly the same fractional error as shown in

panels (a) and (b). This is discussed and tested further in the next

section.

Finally, panel (d) shows the directional error between the

principal eigenvector of the computed shear matrix and the

separation vector. (The banding for small directional errors is due

to numerical quantization in the computation of the directional

error.) It is apparent that directional errors are very small in this

method.

Note that the errors in the shear values computed from an

ensemble of particles are, in general, much smaller than the pair-

wise errors shown in Fig. 1. (For ensembles used in typical N-body

simulations, the rms force errors are typically 0.3 per cent.) This is

because the Fourier representation of a general particle distri-

bution will have a smaller high-frequency content than the

equivalent representation of a single massive particle, and can thus

be represented better by a given fixed grid. Only if the PP and PM

forces almost exactly cancel will the fractional errors be larger,

although in this case the absolute error will be small. There will be

no appreciable change in the error values with larger mesh

configurations normally used with N-body simulation data.

3.2 Comparison of measured trace and overdensity for a

distribution of particles

For a more realistic test of the code, we compare the computed

shear trace with the density evaluated using a standard SPH

algorithm for one of our cosmological simulation boxes, described

in Section 5.1. The SPH program evaluates a parameter, l, at each

particle in the simulation box, representing half the distance to the

32nd nearest neighbour. This parameter defines the volume for the

density calculation, and the same parameter is applied in the shear

code to establish an appropriate value of the softening for the

particle. In addition, a specific smoothing function may be used to

distribute the mass throughout the volume so defined.

To make a suitable comparison with the shear trace values, we

have computed overdensity values from these densities, and

compared the ratio of the overdensity and the trace with the

overdensity values. In Fig. 2 we plot the average value of this ratio

in each overdensity bin. We have used a minimum value of 0.0005

for the variable softening, and analysed the data from 10 000

particle positions.

Because of the very different ways in which the densities are

determined (from the shear trace in the new code, and from

particle numbers in the SPH program, and the differing shapes of

the softening functions used), we expect some dispersion in the

values at all densities, and this is indicated by the 1s error bars.

The form of the plot is easily understood throughout its entire

range. At low densities, the SPH density values are under-

estimated, because isolated particles do not have the requisite

number of nearest neighbours within the particle mesh. At high

densities, the particle softenings will be at the same minimum

level for all the particles, retarding the amount of increase in the

shear trace values as the real density continues to rise. This effect

causes the upturn shown in Fig. 2, which occurs at the overdensity

value of 4:5 � 103 for a minimum softening of 0.0005.

The equality of the particle overdensities and shear trace values

over more than three decades in density gives us considerable

confidence in the use of the shear algorithm generally, and for

trace values determined at particle positions, or within the

softening range.
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Figure 1. Computed shear components and errors in these components

arising from the single-particle test described in Section 3.1. The solid

lines in panels (a) and (b) show the radial and transverse components of the

shear respectively, normalized so that values arising from a Coulombic

potential would be constant. The scattered dots show the fractional error in

these quantities. Panel (c) shows (solid line) the absolute value of the trace

of the shear values (4p times the density) and the fractional error in that

quantity. The panel shows the value of the effective particle softening used,

indicated by s, and the absolute value of the trace expected in the empty

background in a periodic system �j2 4pj� beyond the softening. Panel (d)

shows the directional error in the principal eigenvalue of the shear matrix

in degrees. The two vertical lines show the cell size (1/64) and the search

cell radius (here 3.37/64). For a complete description of the test and of the

features shown in the figure, refer to the text. All separations, r, are

expressed in units of the system's period.
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4 S O M E A DVA N TAG E S O F T H E

T H R E E - D I M E N S I O N A L M E T H O D

4.1 Convergence to limiting values

In the introduction we outlined some of the considerations we

made before developing the new three-dimensional algorithm. We

expressed concern that shear values in general may converge only

slowly to their true limiting values as increasingly large volumes

of matter are included around an evaluation position. If so, it

would be essential either to take full account of the periodicity of

matter orthogonal to the line of sight, or to include the effects of

matter over considerable distances from the line of sight.

We investigated this rate of convergence of the shear values for

one of our simulation boxes (which we describe in Section 5.1).

By using a straightforward direct-summation method for the

particle contributions to the shear, we evaluated one of the off-

diagonal two-dimensional shear components as we progressively

added mass out to a radial extent of 2.5 box units. Beyond a radius

of 0.5 from the central position, the particles were laid down with

the periodicity of the fundamental volume. The depth was one box

unit throughout, because of the inbuilt periodicity along the line of

sight. (We show in Appendix B that provided there is periodicity

along the line of sight, the two-dimensional shear values will

equate with the three-dimensional results integrated over a single

period.)

Fig. 3 clearly shows that by including the matter within a single

period only (to a radius of 0.5), values for the shear components

will, in general, be seriously in error. Of course, different

simulations and particle distributions will display different rates

of convergence to the limiting values. However, it is quite clear

that by making correct use of the periodicity in simulations (as an

approximation to the distribution of matter outside of each

simulation cube), together with the net zero-mass requirement,

more realistic component values are achieved. Other approaches

which do not employ these two conditions may suffer from

inadequate convergence to the limiting values.

4.2 The effects of angular diameter distances

Our three-dimensional approach allows the use of the appropriate

angular diameter distances at every single evaluation position.

This is not possible in two-dimensional approaches, where it is

assumed that all the lensing mass is projected on to a plane at a

single angular diameter distance.

By definition, the angular diameter distance of a source is the

distance inferred from its angular size, assuming Euclidean

geometry. In an expanding universe, therefore, the angular

diameter distance becomes a function of the redshift of the source

(and of the observer). In addition, the inclusion of excess matter

within the beam causes the beam to become more focused, and

makes the source appear closer than it really is. By considering the

universe to be populated by randomly distributed matter inhomo-

geneities, but resembling the Robertson±Walker, Friedmann±

LemaõÃtre model on large scales (see Schneider et al. 1992), a

second-order differential equation is obtained for the angular

diameter distance, D, in terms of the density parameter, V, for the

universe, and the redshift, z, of the source:

�z� 1��Vz� 1� d2D

dz2
� 7

2
Vz� V

2
� 3

� �
dD

dz
� 3

2
VD � 0: �2�

Dyer & Roeder (1973) made assumptions about the type of

matter distribution to obtain a more general and practical equation.

They assumed that a mass fraction, aÅ (called the smoothness

parameter), of matter in the universe is smoothly distributed, and

that the fraction (12aÅ ) is bound into clumps. Then the equation

for the angular diameter distance becomes

�z� 1� �Vz� 1� d2D

dz2
� 7

2
Vz� V

2
� 3

� �
dD

dz

� 3

2
�aV� jsj2

�1� z�5
" #

D � 0; �3�

in which shear, s , is introduced by the matter distribution around

the beam. They considered the following scenarios for the

application of this equation. First, they considered a universe in

which all the matter is bound into clumps, so that �a � 0, and in

which the light beam passes far away from the clumps. This is

described as light propagating through an `empty cone,' and gives

rise to maximal divergence of the beam. The second scenario is

more general and practical, in that it uses an intermediate value for

the smoothness parameter �0 , �a , 1�, but still requires the beam
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Figure 2. Ratio of overdensity from an SPH program to the normalized

shear trace, against the binned overdensity. The average values of the ratio

are shown by the broken line; the full line is drawn at the value of unity for

comparison. The upturn occurs at the overdensity value of 4:5 � 103, as

indicated, for a minimum softening of 0.0005.

Figure 3. One of the two-dimensional shear components, c12 ��
2f=xy�; as a function of the radial extent of matter included.
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to pass far away from the clumps. In this case the beam contains a

proportion of the smoothed matter distribution which introduces

convergence, and hence some degree of focusing. The third

scenario has �a � 1, i.e., an entirely smooth universe. Here the

smooth matter distribution is present within the beam, giving a

`full-cone,' or `filled beam' approximation.

In all of these scenarios the term including the shear in equation

(3) is minimized, so that the final `Dyer±Roeder equation'

becomes

�z� 1��Vz� 1� d2D

dz2
� 7

2
Vz� V

2
� 3

� �
dD

dz
� 3

2
�aVD � 0; �4�

and can be solved for different values of V and �a . For V � 1 and

�a � 1 (filled beam), Schneider et al. (1992) quote the result for

the angular diameter distance between an observer at redshift z1,

and a source at redshift z2, as

D�z1; z2� � c

H0

2
1

�1� z1�12�1� z2�
2

1

�1� z2�32
� �

; �5�

or

D�z1; z2� � c

H0

r�z1; z2�; �6�

where r�z1; z2� is the dimensionless angular diameter distance, c is

the velocity of light, and H0 is the Hubble parameter.

Magnification values, m , derived using Dyer & Roeder's

angular diameter distances will be affected according to the

approximation used. For example, rays passing close to clumps or

through high-density regions will result in magnification in any

approximation. If the empty-cone approximation is used, then m
will be greater than 1, and if the full-cone approximation is used,

then m will be greater than the mean magnification, kml, which is

also unity. Rays passing through voids will have m � mmin � 1 in

the empty-cone approximation (since the rays will be far from all

concentrations of matter, and will satisfy the empty cone

conditions). In the full-cone approximation, m , 1 because the

rays will suffer divergence. However, the minimum value in this

case will be (Schneider et al. 1992)

mmin �
D�z; �a � 1�
D�z; �a � 0�
� �2

: �7�

In the testing of our new algorithm we have used the filled-

beam approximation � �a � 1� to obtain the angular diameter

distances. With variable softening, most of the rays will pass

through a slowly varying density field, justifying this choice,

although the smoothness parameter should be different from unity,

and possibly should evolve slowly with time. (Tomita 1998b finds,

by solving the null-geodesic equations for a large number of pairs

of light rays in four different cosmological N-body simulations,

that the best value for aÅ is almost equal to 1, though with

considerable dispersion.) However, the approximation that all rays

should pass far from the clumps will not be strictly true, as shear

on the light rays will be very much in evidence.

We show in Fig. 4 the value of the factor rdrds/rs, where rd is the

dimensionless angular diameter distance from the observer to the

lens (here, the front face of each simulation box), rds is that

between the lens and the source, and rs is that for the observer±

source. We have taken the sources to be at redshifts of 5, 4, 3, 2

and 1. This factor, rdrds/rs, is used to multiply the shear component

values generated in the code, and we see that it has a peak near

z � 0:5 for a source redshift of 5. The curves are very steep near

z � 0, indicating large fractional differences between the values of

rdrds/rs at the front and the back of each simulation box at late

times, where considerable structure may also be present.

We show later, in equation (10), Section 5.3, that the two-

dimensional `effective lensing potentials' are obtained from the

three-dimensional second derivatives of the gravitational potential.

To evaluate the absolute effective lensing potentials we must

introduce the appropriate scaling factor, which applies to the

simulation box dimensions. From equation (10), we can extract

the factor B�1� z�2rdrds=rs, where B � �c=H0��2=c2�GMpart �
�comoving box depth�22: (G is the universal gravitational con-

stant, and Mpart is the particle mass.) For the simulation boxes we

have used, which have comoving dimensions of 100 h21 Mpc,

B � 3:733 � 1029. The �1� z�2 factor occurs to convert the

comoving code units into physical units. By evaluating the factor

B�1� z�2rdrds=rs at the front and rear faces of each simulation

box, we can obtain an estimate of the maximum error associated

with projecting the mass distribution on to a plane. In Fig. 5, we

plot the percentage differences in this factor between the front and
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Figure 4. The factor rdrds/rs as functions of the lens redshift, zs, assuming

sources at redshifts of 5, 4, 3, 2 and 1.

Figure 5. The percentage difference in the multiplying factor for the shear

component values generated by the code, between the front and back faces

of each simulation box. The figure shows the differences for simulation

boxes of different comoving depths, highlighting possible errors associated

with plane projections. For the boxes near to a redshift of 0.5, the box

depths in redshift space are approximately 0.03 for 50 h21 Mpc boxes, 0.06

for 100 h21 Mpc boxes, and 0.12 for 200 h21 Mpc boxes.
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rear faces of each simulation box, and show the results for boxes

of 50, 100, and 200 h21 Mpc comoving depths. The figure clearly

indicates the possible presence of large errors when boxes are

treated as plane projections. The errors are considerable at high

and low redshifts, and, in particular, they are significant near

z � 0:5, where the angular diameter factor rdrds/rs is greatest. For

simulation boxes of 50 h21 Mpc the difference is 4.5 per cent near

z � 0:5, for boxes of 100 h21 Mpc the difference is 9.0 per cent,

and for boxes of 200 h21 Mpc the difference is 16.3 per cent, for a

source at z � 5. These differences in the multiplying factors are,

of course, the maximum differences, and would apply to the

contribution to the shear from particles located in the far face of

the simulation box if the mass distribution were projected into the

near face. Consequently, the actual error in the two-dimensional

shear values computed from all the particles depends entirely on

the specific distribution of particles, and in general will be

lower than the figures indicated in Fig. 5. The actual errors

introduced may also be reduced if the projection is made on to

a plane midway through the simulation box depth, although,

again, the error value will depend on the specific particle

distribution.

Obviously, the front±rear differences are smallest in the

smallest boxes (here 50 h21 Mpc comoving depth), but with

small simulation boxes there are problems in adequately

representing the extent of large-scale structure, and, as we have

seen in Section 4.1, a serious question as to whether two-

dimensional shear values can be correctly determined by

considering matter out to such small radii in the transverse

direction. Even with 100 h21 Mpc boxes we have shown that the

two-dimensional shear values can be seriously in error when only

matter within the fundamental volume is included. With

200 h21 Mpc boxes, better convergence of values may be obtained

because of the larger spread of matter transverse to the line of

sight; however, the range in the angular diameter distance factors

along the line of sight is greater, introducing larger errors. To

reduce this error, it may be thought that the boxes could be divided

into a number of planes; however, this procedure would give

erroneous values for the shear because a full single period in depth

is required, as we show in Appendix B.

In Section 5.3 we show that an approximation for the

magnification in weak lensing is

m . 1� �c11 � c22�; �8�
where the c values are the two-dimensional `effective lensing

potentials,' derived from integrating the three-dimensional com-

ponents. Consequently, we may also find that the errors in the

shear component values, arising from ignoring the angular

diameter distance factors through the simulation boxes, enter

into calculations of the magnification.

5 A P P L I C AT I O N O F T H E C O D E T O

L A R G E - S C A L E S T R U C T U R E S I M U L AT I O N S

5.1 Brief description of the LSS simulations used

Our three-dimensional shear code can be applied to any three-

dimensional distribution of point masses confined within a cubic

volume. Each particle may be assigned an individual mass,

although in our tests of the code we have assumed all the particles

to have the same mass. In addition, the code allows for either a

fixed softening value for each particle, or a variable softening,

dependent on each particle's density environment.

We applied the code to the data bank of cosmological N-body

simulations provided by the Hydra Consortium (http://www.astro.

uwo.ca/hydra_consort/data/data.html) and produced using the

`Hydra' N-body hydrodynamics code (Couchman et al. 1995).

Our initial tests, described here, have used individual time-

slices from these simulations using 1283 particles with a cold dark

matter (CDM) spectrum in an Einstein±de Sitter universe. Each

time-slice has comoving sides of 100 h21 Mpc. Since each is

generated using the same initial conditions, we arbitrarily

translate, rotate and reflect each time-slice to prevent the

formation of unrealistic correlations of structure along the line

of sight, when the boxes are linked together. The simulations used

have density parameter V0 � 1 and cosmological constant

L0 � 0. The power spectrum shape parameter, G, has been set

to 0.25, as determined empirically on cluster scales (Peacock &

Dodds 1994), and the normalization, s8, has been taken as 0.64 to

reproduce the number density of clusters (Vianna & Liddle 1996).

The dark matter particle masses are all 1:29 � 1011 h21 solar

masses.

5.2 The choice of softening

We have chosen a softening function for the radial distribution of

mass for each particle, such that light rays feel the existence of a

smooth mass distribution. Our code also allows for variable

softening, so that each particle may be assigned its own softening-

scale parameter, depending on the particle number-density in its

environment. In this way, it can be used to minimize the effects of

isolated single particles, whilst the smoothed denser regions are

able to represent the form of the large-scale structure. The

parameter we have chosen to delineate the softening scale for each

particle is proportional to l, where 2l is the radial distance to the

particle's 32nd nearest neighbour. The value of l is evaluated for

every particle by applying our SPH density program, as described

in Section 3.2, to each simulation box.

We allow the maximum softening to be of the order of the mesh

dimension for isolated particles, which is defined by the regular

grid laid down to decompose the short- and long-range force

calculations. In this way the density values are improved, as we

described in Section 2.3. This also means that individual isolated

particles are unable to strongly influence the computed shear

values, in accordance with our need to study the broad properties

of the large-scale structure, rather than the effects of individual

particles.

Our new algorithm works with the ratio of the chosen softening

(proportional to l) for each particle, to the maximum value

(dependent on the mesh size), so that the parameter used has a

maximum of unity. Our method, which employs the variable

softening facility, contrasts markedly with that of other workers.

As an example, JaroszynÂski et al. (1990), who evaluate deflections

due to density columns projected on to a plane, apply no softening

function, except to assume that all the mass within each column is

effectively located at its centre.

In the CDM simulations we have used, the minimum values for

2l are of order 1023; e.g., for the redshift z � 0:4986 box, the

minimum 2l � 1:023 83 � 1023, (equivalent to 68 h21 kpc). This

is comparable to the Einstein radius, RE, for a large cluster of 1000

particles (for which RE � 82 h21 kpc for a lens at z � 0:5 and a

source at z � 1). Consequently, by setting a working minimum

value for the variable softening of 1023, we would rarely expect to

see strong lensing due to caustics in our simulations. Also, the

q 1999 RAS, MNRAS 308, 180±200



Three-dimensional shear from simulation data 189

radial extent of this minimum softening is of the order of galactic

dimensions, thereby providing a realistic interpretation to the

softening.

Having justified our chosen value for a working minimum

value, it is also important to understand the sensitivity of our

results to the input softening. Fig. 6 shows the distribution of

magnifications due to a single (assumed isolated) simulation box

�z � 0:4986�, and a source redshift of 1, using minimum

softenings of 0.001, 0.002, 0.003 and 0.004 in box units. All the

distributions are very close for 90 per cent of the lines of sight, and

show only gradual changes from the lowest to the highest

softening values. Only in limited numbers of lines of sight are

there significant differences which occur at the high-magnification

end.

To highlight the sensitivity to the minimum softening, we plot

in Fig. 7 the accumulating number of lines of sight having

magnifications greater than or equal to the abscissa value. As

expected, we see that the results using the smallest minimum

softenings give rise to the highest maximum magnifications.

5.3 Multiple lens-plane theory for magnification

distributions

There are two very important properties of our three-dimensional

algorithm for shear which make it eminently suitable for use

within particle simulations.

First, each simulation box is treated as a periodic system, so that

the contributions from all particles and their images are included

in the shear computations.

Secondly, as far as we are aware, this is the first algorithm

successfully adapted for N-body simulations, in which the shear

components may be evaluated at a large number of locations

throughout the extent of the box. In this way each of the selected

locations may be considered as an individual deflection site, and

deflections computed using individual angular diameter distances

for each site. Two-dimensional planar approaches, by contrast, are

able to compute only one deflection for each ray at each projection

plane, and such planes will be assumed to be at a single particular

angular diameter distance.

The first property of our algorithm gives confidence in the shear

component values computed, whilst the second property enables

us to trace the behaviour of rays throughout the full depth of each

simulation box.

To do this, we construct a rectangular grid of directions through

each box. Since we are dealing with small deflections, and are

interested only in the statistics of the output values, we consider

each light ray to follow one of the lines defined by these directions

through the box. The evaluation positions are specified along each

of these lines of sight.

The six independent second derivatives of the peculiar

gravitational potential are calculated by the code at each of the

selected evaluation positions throughout a simulation box. We

then integrate the values in small chunks along each line, forming,

essentially, a large number of planes through each simulation box.

These integrated values form the input data to establish the

elements of the Jacobian matrix, A, on each of the lines of sight

for each of the deflection sites.

We make use of the multiple lens-plane theory, which has been

developed by Blandford & Narayan (1986), Blandford &

Kochanek (1987), Kovner (1987) and Schneider & Weiss

(1988a, b), and described in detail in Schneider et al. (1992). At

the first deflection site from the source we evaluate the

components of the Jacobian matrix,

A �
1 2 c11 2c12

2c21 1 2 c22

 !
; �9�

in which the two-dimensional `effective lensing potentials' are

obtained from the three-dimensional second derivatives of the

gravitational potential:

cij �
DdDds

Ds

� 2

c2

�
2f�z�
xixj

dz; �10�

where Dd, Dds and Ds are the angular diameter distances from the

observer to the lens, the lens to the source, and the observer to the

source respectively. At subsequent deflection sites we obtain the

developing Jacobian matrix recursively, since the final Jacobian

for N deflections is

Atotal � I 2
XN

i�1

UiAi; �11�
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Figure 6. Magnification distributions for various minimum softenings,

0.001, 0.002, 0.003 and 0.004 in box units, for a simulation box at z �
0:4986 and a source at z � 1. Each bin is of width 0.0034 in magnification.

Figure 7. The accumulating number of lines of sight for which the

magnification is greater than or equal to m . The plots show the results of

different minimum softenings in a simulation box at z � 0:4986, for a

source at z � 1.
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where I is the unit matrix,

Ui � ci
11 ci

12

ci
21 ci

22

 !
�12�

for the ith deflection, and each of the intermediate Jacobian

matrices can be written as

Aj � I 2
Xj21

i�1

bijUiAi; �13�

where

bij �
Ds

Dis

Dij

Dj

; �14�

in which Dj, Dis and Dij are the angular diameter distances to the

jth lens, that between the ith lens and the source, and that between

the ith and jth lenses respectively.

The magnification is, in general,

m � �det A�21; �15�
so that we can assess the magnification as it develops along a line

of sight, finally computing the emergent magnification after

passage through an entire box or set of boxes. For example, Fig. 8

shows the development of the magnification through a single

isolated simulation box �z � 0:4986� with a chosen source redshift

of 1. The slightly different emerging magnifications arise because

of the choice of different input minimum softening values. The

figure shows an arbitrary line of sight, and we have assumed that

the redshift varies linearly through the box. The redshift at the far

face of the chosen box, 0.5615, is also the redshift of the first

evaluation location for the shear, so that, in general, the first value

of the magnification may be different from unity. Where

significant shear component values exist, they will be dependent

on the set minimum softening value; in Fig. 8 we see that the

magnification curves diverge or converge at such locations. At

most locations where the shear component values are small, the

curves for different softenings are closely parallel, because of the

insensitivity to the softening. This feature is also seen in Fig. 8.

The most significant shear component values along the line of

sight selected for Fig. 8 occur at the redshift of 0.5162, for which

the angular diameter multiplying factor is rdrds=rs � 0:0444 for a

source redshift of 1. If a planar approach were taken, and the

matter distribution were projected on to a plane at the midway

redshift of 0.5301 for this box, then the appropriate angular dia-

meter multiplying factor would be rdrds=rs � 0:0433, introducing

an error of 2.5 per cent to the two-dimensional lensing potentials

used in the computation of the magnification. This example

highlights the fact that errors introduced in two-dimensional

approaches, where only a single angular diameter multiplying

factor can be used, depend entirely on the specific distribution of

matter. It also highlights the importance of using the appropriate

angular diameter distances throughout the depth of each

simulation box, which can only be achieved with a three-

dimensional approach.

The convergence, k , is defined by

k � 1

2
�c11 � c22� �16�

from the diagonal elements of the Jacobian matrix, and causes

isotropic focusing of light rays, and so isotropic magnification of

the source. Thus, with convergence acting alone, the image would

be the same shape as, but of larger size than, the source.

The shear, g , in each line of sight is given by

g2 � 1

4
�c11 2 c22�2 �

1

4
�c12 � c21�2: �17�

This is sometimes written in component form:

g2 � g2
1 � g2

2; �18�
where

g1 �
1

2
�c11 2 c22�; �19�

and

g2 �
1

2
�c12 � c21�: �20�

Shear introduces anisotropy, causing the image to be a different

shape, in general, from the source.

With weak lensing, and these definitions, the magnification

reduces to

m . 1� �c11 � c22� � 1� 2k: �21�
In the presence of convergence and shear, a circular source

becomes elliptical in shape, with major and minor axes

a � 1

�1 2 k 2 g� ; �22�

and

b � 1

�1 2 k� g� ; �23�

so that the ellipticity, e , is given by

e � 1 2
b

a
� 1 2

1 2 k 2 g

1 2 k� g
; �24�

which reduces to

e . 2g �25�
in weak lensing.
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Figure 8. Magnification versus redshift along an arbitrary line of sight,

using two different minimum softening values. The lower curve has a

minimum softening of 0.001, and the upper curve has a minimum

softening of 0.004. The result has been established using a single (assumed

isolated) simulation box (z � 0:4986) and a source redshift of 1. The

redshift has been assumed to vary linearly through the box from z �
0:4986 at the front face to z � 0:5615 at the far face.
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Distributions and relationships amongst all these quantities can

be determined straightforwardly. As an example, Fig. 9 shows the

shear, g , and convergence, k , in a single (assumed isolated)

simulation box, �z � 0:4986�, with a source at redshift zs � 1. The

minimum (variable) softening has been set in this case at 0.001.

The considerable scatter in the data-points arises because of the

expected strong fluctuations in the shear for light rays passing

through regions of high density (high convergence). In addition,

the shear appears to increase broadly with increasing convergence,

as might be expected. Plots of the shear versus the convergence

using different values of the minimum softening show similar

features. Measurements of the magnification and ellipticity show

the linear dependences on k and g according to equations (21) and

(25), as expected. Small departures from linearity are apparent

only at high values of k and g .

Fig. 10 is an example of the magnification distributions in three

different simulation boxes, which are assumed to be isolated in

space. We show the distributions for the z � 0 box (which we take

to extend from z � 0 to 0.0339), the z � 0:4986 box (z � 0:4986

to 0.5615), and the z � 1:0404 box (z � 1:0404 to 1.1400), each

with minimum softenings of 0.001. (The box labelling follows

from the nominal redshifts for the boxes in the original particle

simulations.) A source redshift of zs � 2 has been chosen. (All the

distributions have a mean magnification value of 1.)

In Fig. 11 we show the results from the same three simulation

boxes, for a source at z � 2, but here assumed to be all located at

the same position �z � 1:0404�. This allows direct comparisons

between the boxes to be made in terms of the formation of

structure within them. For example, the later boxes show higher

values for the maximum magnifications, and have shallower

slopes in the distributions at the high-magnification end. The

peaks in the distributions for the later boxes occur at slightly lower

magnification values, whilst all have mean magnifications of

unity, as required.

By a simple extension of the multiple lens-plane theory, we are

now able to take the emergent c values from each simulation box,

and feed them into a string of subsequent boxes. In this way we

are able to obtain all the necessary emergent parameters at z � 0

arising from a source at high redshift. We shall be reporting on

these results in a future publication.

6 S U M M A RY A N D C O N C L U S I O N S

In this paper we have discussed our motivations for developing a

new algorithm for use with cosmological N-body simulations in

the study of weak gravitational lensing. We have also described

the algorithm we have developed together with its variable

softening refinement, and we have tested the output results from

three-dimensional simulations against the Ewald (1921) sum-

mation method for the shear components. We have described how

the results from the new code can be applied to realistic

simulations by including the appropriate angular diameter

distances at every evaluation position. In this way it is very

straightforward to compute the final magnifications, source

ellipticities, shear and convergence values as a result of the

passage of light through linked simulation boxes. The main points

we have discussed are the following.
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Figure 9. Shear values versus the convergence in a single simulation box

(z � 0:4986), assumed isolated, with a source redshift of 1. The minimum

softening applied is 0.001 in box units. The data points result from

evaluating the shear and convergence along 10 000 lines of sight.

Figure 10. A comparison of the magnification distributions for three

different simulation boxes, placed at their correct distances, with a source

at zs � 2. The bin widths are 0.0012 in magnification.

Figure 11. A comparison of the magnification distributions in three

different simulation boxes, all assumed to be located at the same redshift,

1.0404. The bin widths are 0.0013 in magnification. The distribution curve

for the z � 1:0404 box (which is placed at its correct position) is the same

as that shown in Fig. 10; small differences occur because of the different

magnification bin widths.
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(1) Appendix B rigorously shows that results from the two-

dimensional and three-dimensional approaches to weak lensing

are equivalent only if the mass distribution is periodic along the

line of sight, a full period (in depth) is considered, and the angular

diameter distances are assumed constant throughout the depth.

(2) In order to evaluate the shear components correctly, it is

necessary to work with the peculiar potential, which we describe

in Appendix A. This applies equally to two-dimensional and

three-dimensional methods.

(3) The results for two-dimensional planar projections may be

invalid if matter outside the single period plane (in directions

orthogonal to the line of sight) is not included. Because of the

slow convergence of the potential and shear components to their

limiting values, it is necessary, in general, to include the effects of

matter well beyond a single period, but depending on the specific

mass distribution.

(4) The inclusion of the appropriate angular diameter distances

at every evaluation position within a three-dimensional realization

avoids errors in the shear and magnification values. The errors

incurred by treating simulation boxes as planes can be a maximum

of 9 per cent in a single box of depth 100 h21 Mpc at a redshift of

0.5 (where the lensing effects are greatest for a source at z � 5).

(At low and high redshifts the maximum fractional errors may

be greater.) The maximum errors apply when the plane

projection is made on to the `front face' of the simulation

box, but they are dependent on the specific particle distribution

within the box.

(5) The output from our algorithm is the three-dimensional

shear components evaluated at a large number of positions within

a periodic N-body simulation cube. The code itself is a

development of the standard P3M algorithm which determines

forces (the first derivatives of the potential) and the potential itself.

The short-range part of the shear field at a point is accumulated

directly from neighbouring particles, whilst the long-range part is

obtained by taking a second difference of the force values. The

computational cost of the P3M method is low, being of order

N log2 N rather than of order N2.

(6) The PM calculation uses a FFT method in which the density

distribution is smoothed, and can be well sampled by the mesh.

The mesh potential is then obtained by FFT convolution. Errors in

the method can be minimized by suitable adjustment of the

Fourier components of the Green's function.

(7) A key feature of the new algorithm is the facility to input a

variable softening parameter. The feature enables particles in

low-density regions to have extended softening, so that nearby

evaluation positions register a density rather than a complete

absence of matter. By contrast, particles in highly clustered

regions are assigned low softening values, and a selected

minimum softening value is introduced which limits the

possiblility of singular (strong lensing) behaviour. The variable

softening feature thus enables a much more realistic depiction of

the large-scale structure within a simulation to be made and its

weak gravitational lensing effects to be computed. Nevertheless, if

strong lensing does occur, it will be evident from the determinant

of the Jacobian, which may be evaluated at any point along a line

of sight. Ray-tracing procedures, however (see, e.g., Wambsganss

et al. 1998), are able to indicate directly the possibility of

multiple-imaging, where different rays in the image plane can be

traced back to the same pixel in the source plane.

(8) In Appendix C we summarize the Ewald (1921) summation

method, and develop the equations for use as a comparison with

the values for shear obtained with our new algorithm.

(9) By choosing an appropriate filter, we are able to set limits

for the maximum errors in the computed shear values from our

code. In the tests, the maximum errors in both the radial and the

transverse components of the shear are about 7 per cent for the

effects of a single particle, when compared with the values

obtained using the Ewald formulae. The rms errors are less than

2 per cent, and errors for ensembles of particles, to which we

intend to apply the code, are typically 0.3 per cent (rms). The

errors in the trace of the shear matrix can be large, because the

trace frequently involves the addition of nearly equal and opposite

(but large) values. Individually, however, the errors in each

component remain small.

(10) We have tested the data also against the output of a

completely different program for the density at particle locations.

There is good agreement for the normalized density from this

program when measured against the shear trace from our new

algorithm.

(11) The output from the code can be used together with the

multiple lens-plane theory and appropriate angular diameter

distances to obtain values for the magnification, source ellipticity,

shear and convergence for a large number of lines of sight as they

emerge from a simulation box. We show a typical distribution plot

for the emerging magnification, having given proper consideration

to the desired minimum value for the variable softening.

(12) We commend the algorithm for use in periodic N-body

simulations from which the data can be manipulated to obtain

emergent values from linked simulation cubes covering great

distances. In this way, such a procedure also allows the

comparison of results from different cosmologies. It is anticipated

that our algorithm will become publicly available in enhanced

form in due course.
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A P P E N D I X A : P E R I O D I C I T Y A N D T H E P E C U L I A R P OT E N T I A L

A common method for modelling a section of the Universe is to consider a distribution of masses within a triply periodic cube. In this

appendix we examine how the peculiar potential in this model relates to that in a universe with large-scale homogeneity.

A1 The peculiar potential

In Friedmann±Robertson±Walker models when considering the growth of perturbations, gravitational lensing by cosmic structure, etc., we

are interested in deviations from homogeneity. The quantity of interest in this case is the peculiar potential. This is derived in the usual way

by writing the equation of motion,

d2r

dt2
� 27rF; �A1�

for matter at position r, in terms of a comoving coordinate r � ax, where a is the expansion scalefactor. The peculiar potential ± the source

for deviations from homogeneity ± is

f � F� 1=2a �ax2: �A2�

The rate of change of expansion velocity, aÈ , is determined by the mean density of matter, rÅ , leading to the familiar results

72f � 4pGa2�r 2 �r� �A3�

and

f � F 2 2=3pGa2 �rx2 �A4�

(for full details see, e.g., Peebles 1993). The peculiar potential arising from Poisson's equation (A3) corresponds to a system with zero net

mass on large scales.

Consider now a model universe of masses periodic in a cube of side L. The forces generated by the matter distribution satisfy

F�x� Ln� � F�x�, where n is an integer triple. Thus integrals,
�

L2 F´dS, where S is an outward normal, taken over opposite faces of the

cube, sum to zero, and
�

S
F´dS over the surface of the cube vanishes. The divergence theorem and Poisson's equation, 72f � 4pGr 0, then

imply

4pG

�
L3

r 0dV �
�

L3

72f dV � 2

�
L3

7´F dV � 2

�
S

F´dS � 0; �A5�

and hence the total mass in the system is zero.

This result is a consequence of solving Poisson's equation in a periodic cube. We see that the real result for the shear, obtained from the

second derivatives of the peculiar potential, f , is related to the naõÈve result based on the full gravitational potential, F, through the use of

r 0 � r 2 �r .

Note that the zero mean density implicit in equation (A3) is a result of the coordinate transformation; that this transformation is well

motivated is a reflection of the large-scale homogeneity of the universe. The zero mean density in equation (A5), on the other hand, is

simply a result of the imposed periodicity. The two views converge only for a periodic cube sufficiently large that the amplitude of the first

few discrete Fourier modes are small enough that they describe a smooth transition to a zero mean value and homogeneity.

A2 The peculiar potential in a periodic system

We begin by demonstrating a useful result relating the Fourier transforms of continuous functions and the Fourier coefficients of the

periodic functions constructed from them. First, as a convenient mechanism for translating between Fourier representations of continuous
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and periodic functions, we define the three-dimensional comb
`̀ �x� �Pn d�x 2 n�, where n is an integer triple (see, e.g., Hockney &

Eastwood 1988). The Fourier transform of this function is the comb
`̀ �k=2p�.

Consider the function, with period L, constructed by periodically repeating f :

f ²�x� �
aa
�x=L�*f �x� �A6�

�
X

n

f �x 2 nL�: �A7�

Applying the Fourier convolution theorem to equation (A6), we see immediately that the Fourier transform of the periodic function, f ², is

~f
²

k �
aa k

L=2p

� �
~f �k�; �A8�

where fÄ is the continuous Fourier transform of f.

Equation (A8) gives the Fourier series representation of the periodic function directly, and demonstrates the familiar result that the

Fourier coefficients of the continuous periodic function, obtained by accumulating repeats of the continuous function (here
P

n f �x 2 nL)

obtained from f ), are the same as the Fourier components of the continuous function at wavenumbers k � 2pl=L. This result is the analogue

in real space of aliasing in Fourier space. If the continuous function is zero outside the fundamental cell, the periodic representation is

simply obtained by tiling space with repeats of the fundamental cell. (This is the real-space analogue of a band-limited function.)

Consider now N particles distributed in a cube of side L. Let the position of particle i be xi. The density is then

r�x� �
X

j

mjd�x 2 xj�; �A9�

without, for the moment, requiring zero total mass. Where necessary, we can consider a periodic density distribution constructed by tiling

space with periodic repeats of the distribution in the fundamental cube:

r 0�x� �
aa
�x=L�*r�x�: �A10�

The gravitational potential at a point x in the periodic system is

f�x� � G
aa
�x=L�*r�x�*w�x�; �A11�

where w is the pairwise `interaction' potential (or Green's function). Equation (A11) may be interpreted in two ways. We may consider a

periodic distribution of matter as in equation (A10) convolved with the regular interaction potential. Alternatively, we can restrict attention

to the matter in the fundamental zone and consider a modified interaction potential

w²�x� �
aa
�x=L�*w�x� �A12�

�
X

n

w�x 2 nL�: �A13�

Both of these interpretations will be useful.

Using the result in equation (A11), the Fourier series coefficients of f are, for k � 2pl=L and l an integer triple,

~f k � G ~r�k� ~w�k�; �A14�
where ~r�k� �Pj mje

2ik´xj is the continuous Fourier transform of the particle distribution in the fundamental zone (equation (A9)) and wÄ (k)

is the continuous Fourier transform of the interaction potential.

Requiring the mean mass to be zero is equivalent to subtracting a component equal to
P

i mi=L3 from the density in equation (A9), or

setting ~f k�0 � 0 in equation (A14). With this modification equation (A11) becomes

f�x� � G
aa
�x�*

X
j

mj w�x 2 xj�2
1

L3

�
L3

w�x 2 x 0� d3x 0
� �

�A15�

� G
X

jn

mjw�x 2 xjn�2

P
j mj

L3

X
n

�
L3

w�x 2 nL 2 x 0� d3x 0
" #

�A16�

� G
X

j

mj

X
n

w�x 2 xjn�2
1

L3

�
w�x 0� d3x 0

" #
�A17�

� G
X

jn

mj w�x 2 xjn�2
1

L3

�
L3

w�x 0 2 nL� d3x 0
� �

; �A18�
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where xjn � xj � nL and jn labels the image of the jth particle in the image cell n. We may write equation (A18) as

f�x� � Gr�x�*w²�x�; �A19�
where we now have for the density

r�x� �
X

j

mj d�x 2 xj�2
1

L3

� �
; �A20�

and equation (A13) is now

w²�x� �
X

n

w�x 2 nL�2
1

L3

�
L3

w�x 0 2 nL� d3x 0
� �

: �A21�

It is unnecessary for the mean value of both r and w to be zero. The form for the modified potential is convenient, however, since, for a

potential which is Coulombic at large scales, with w , 1=r, the form in equation (A21) is convergent, whereas the form in equation (A13) is

not: nor does the integral in equation (A17) converge. The Fourier synthesis of the peculiar potential is

f�x� � G

L3

X
k±0

eik´x ~r�k� ~w�k�: �A22�

A3 Particle softening

The delta function in equation (A9) may be replaced by any compact even function, with volume integral equal to unity, to represent a

distribution of softened particles. (The softening will be considered fixed for the present to permit Fourier analysis.) However, since it is

only the interaction of the particles via the gravitational field which is relevant, we may, equivalently, describe any particle softening by

modifying the pairwise (Coulombic) potential, w , at small separations.

From equation (A22) we can immediately write

72f � 2
G

L3

X
k±0

eik´x ~r�k�k2 ~w�k�: �A23�

For a Coulombic interaction potential, w�r� � 21=r, we have ~w�k� � 24p=k2. If we set ~w�k� � 24p ~S�k�=k2 with ~S�0� � 1, then S(R)

describes the departure of the interaction potential from Coulombic at small scales and, as we will see, plays the role of a particle softening.

Equation (A23) becomes

72f � 4pG

L3

X
k±0

eik´x ~r�k� ~S�k� �A24�

� 4pGr�x�*S�x� �A25�

� 4pGrS �A26�
which is Poisson's equation for a distribution of softened point charges;

rS�x� � 4pG
X

j

S�x 2 xj�2
1

L3

� �
: �A27�

Note that if we wanted the force on a softened particle from the distribution of softened particles (rather than merely sampling the

density field at a point), the appropriate interaction potential in Fourier space would be ~w � 24p ~S
2�k�=k2.

A P P E N D I X B : E Q U I VA L E N C E O F 2 D A N D 3 D S H E A R C A L C U L AT I O N S

B1 General

It is frequently assumed that for the purposes of determining deflections and shearing of light a three-dimensional mass distribution may be

represented by a plane projection of the density. In particular, many workers in the field of gravitational lensing treat cosmological N-body

simulation cubes as collapsed planes. In this appendix we investigate this assumption and show under what conditions the result holds.

The result is approximate because of the need to apply the appropriate angular diameter distances at every deflection site (or evaluation

position). In our derivation we assume that these factors are constant along the line of sight through the projected volume, whereas in

practice they will vary slightly through the simulation volume. (The technique developed in this work applies the angular diameter distances

at every evaluation position within each three-dimensional realization, and evaluates the shear components at many locations within each to

enable a complete description of the shearing of a light ray during its travel through the simulation.)

We will show that computations based on two-dimensional (planar) projections of three-dimensional (periodic) simulations are

adequate provided: (a) the mass distribution is periodic along the line of sight, and a single (full) period is included in the

projection; (b) proper account is taken of the full transverse extent of matter, (which should normally be assumed to be periodic,
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unless strong lensing by matter limited in extent is being considered); by ignoring this requirement, it is likely that the convergence

of deflection angles and shear components to their limiting values will not be achieved; (c) the net zero mass requirement is

adopted.

Consider the peculiar potential, f(x), in a three-dimensional periodic system as given above in equation (A18):

f�x� � G
X

jn

mj w�x 2 xjn�2
1

L3

�
L3

w�x 0 2 nL� d3x 0
� �

: �B1�

As discussed in Section A2, the integral in equation (B1) is finite and the sum over n converges. Although we will be considering

derivatives of the potential ± in which case the second, constant, term drops out ± it is useful to have a rigorous convergent expression for

the peculiar potential in a periodic system.

We are interested in obtaining the integrated shear along a line of sight over one period:
�

L
2f�x�=xixj dz. We will begin by

integrating the peculiar potential over one period:
�

L
f�x� dz.

In the following we will split vectors over three dimensions into a two-dimensional component perpendicular to the line of sight and a

component along the line of sight, here taken to be in the z direction. A superscript asterisk is used to denote two-dimensional quantities,

e.g., x � �x*; z�. Then the two-dimensional potential is

f*�x*� �
�

L

f�x� dz

� G
X
jn*

mj

X
s

�
L

dzw�x* 2 x*
jn*; z 2 zjs�2

1

L2

�
L

�
L2

w�x* 0 2 n*L; z 0 2 sL� d2x* 0 dz 0
� �

� G
X
jn*

mj

�
dzw�x* 2 x*

jn*; z 2 zj�2
1

L2

� �
L2

w�x* 0 2 n*L; z� d2x* 0 dz 0
� �

� G
X
jn*

mj w*�x* 2 **
jn*�2

1

L2

�
L2

w*�x* 0 2 n*L� d2x* 0
� �

; �B2�

where

w*�x*� �
�
w�x*; z� dz: �B3�

Equation (B2) is the two-dimensional analogue of equation (B1), with the interaction potential, w replaced by w*. Thus the three-

dimensional peculiar potential integrated over one period L in one dimension, gives the same result as that obtained from the

projected (surface) density of particles with a two-dimensional interaction potential arising from the projection from 21 to 1 of

the three-dimensional interaction potential. The corresponding results for the shear components, 2f*=xixj, xi; xj ± z, follow

directly.

B2 Special case of a Coulombic potential

For the case of a Coulombic potential in three dimensions, w � 21=r; where r2 � x*2 � z2, w*�x*� � 2
�

dz=r diverges. Consider the two-

dimensional potential over a finite range in z, 0 # z # M;

w*
M�x*� � 2

�M

0

w dz

� 22

�M

0

dz�����������������
x*2 � z2

p
� 2 ln jx*j2 2 ln �M �

�������������������
x*2 �M2

p
�: �B4�

From equation (B2) we can then write

f*�x*� � lim
M!1 G

X
jn

mj w*
M�x* 2 x*

jn*�2
1

L2

�
L2

w*
M�x* 0 2 n* 0L� d2x* 0

� �( )

� G
X

jn

mj 2 ln jx* 2 x*
jn*j2

1

L2

�
L2

2 ln jx* 0 2 n* 0Lj d2x* 0
� �

: �B5�

Thus, for w�r� � 21=r, the appropriate two-dimensional potential is w*�r*� � 2 ln �r*�, as expected.
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B3 Softening

The discussion above applies to any suitably well-behaved interaction potential, w . In particular, consider the case of a distribution of

softened particles. This may be described in terms of an interaction potential which is Coulombic at large scales but which falls below 1/r at

small scales. It is most convenient to derive the appropriate w* in Fourier space. We may set ~w�k� � 24p ~S
2�k�=k2 with ~S�0� � 1 (see

Section A3). The required two-dimensional Fourier transform is then

~w*�k*� �
�

eik*´x* d2x*

�
f�x� dz � ~f �k*; 0�: �B6�

Thus, for a given softening function S, the appropriate function w* may be found, although an analytic solution may not be possible

especially in view of the notorious difficulty of two-dimensional Fourier integrals.

A P P E N D I X C : T H E E WA L D S U M M AT I O N M E T H O D

In this appendix we turn to the numerical evaluation of sums for the potential and its derivatives in a periodic system such as those in

equation (B1). For a Coulombic potential
�
w�x� d3x is divergent and the potential is well defined (and convergent) only if there is a uniform

negative mass density to cancel the distribution of positive mass particles. Even if this condition is met, the sum for the potential is only

slowly convergent and difficult to compute numerically. Ewald (1921) proposed a method for computing such sums in the context of

calculating lattice potentials of ionic crystals. The electrostatic problem suffers from exactly the same numerical difficulties as the

gravitational problem (the pairwise potential in each case is Coulombic), and it is well known that naõÈvely summing over images of the

fundamental cell gives an order-dependent result. Note that the requirement for zero total mass is the same as the requirement in calculating

crystal energies that the total charge be zero. We derive below Ewald's method as it is applied to the problem of computing the gravitational

potential, and give expressions for the first and second derivatives of the potential ± respectively the force and shear ± and the total

potential. We also demonstrate the relationship of the P3M technique to the Ewald method.

C1 The Ewald method

Consider again a system of N particles in a cube of side L. The density is given by equation (A20):

r�x� �
X

j

mj d�x 2 xj�2
1

L3

� �
: �C1�

The second term on the right-hand side of equation (C1) makes the mean density zero, as required for the existence of a solution to

Poisson's equation. As noted in Section A3, the delta function in equation (C1) may be replaced by any compact even function, with volume

integral equal to unity, to represent a distribution of particles with fixed softening. Alternatively, and equivalently, the interaction potential

may be suitably modified.

The gravitational potential at a point x within the cube is given by equation (A18):

f�x� � G
X

jn

mj w�x 2 xjn�2
1

L3

�
L3

w�x 0 2 nL� d3x 0
� �

; �C2�

where the notation is as in Section A2. Note that evaluating equation (C2) at a particle position, xi, will include the self-energy of particle i.

The sum in equation (C2) converges very slowly and is ill conditioned for numerical computation. Ewald (1921) proposed splitting the

Coulombic potential into two components,

w�R� � w1�R� � w2�R�; �C3�
where the functional form of the split is chosen so that the first component is dominated by quickly converging local contributions, and the

second contains the relatively smooth long-range components of the field. The attenuation of high frequencies in the second component

ensures rapid convergence of the corresponding sum when recast as a Fourier series. Ewald proposed taking w1 � 2erfc�hR�=R,

w2�R� � 21=R 2 w1�R� � 2erf�hR�=R, where erf and erfc are the error and complementary error functions respectively. The parameter h
is chosen to optimize convergence of the resulting real- and Fourier-space sums. For the moment we will not specify the functional form

and will continue with the description in equation (C3).

If we ignore for the moment the mean contribution in equation (C2), we can write the potential as

f�x� � G
X

jn

mjw1�x 2 xjn� � G

L3

X
k

eik´x ~F2k: �C4�

The second term is a Fourier series sum over k � 2pl=L, l an integer triple, because of the periodicity of the system. Referring to the result

in equation (A14), we see that the Fourier components FÄ 2k are given by

~F2k � ~r 0�k� ~w2�k�; �C5�
where r 0�x� �Pj d�x 2 xj�. This is completely equivalent to the results of Section A2 but with wÄ replaced by wÄ 2, the only difference being

that there will be a much larger effective softening for w2.
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We will now ensure that the mean density is zero. It is not sufficient simply to set ~F2;k�0 � 0 in equation (C4) as part of the mean value

of the field is contained in the first (real-space) term. The required potential is

f�x� � G
X

jn

mjw1�x 2 xjn�2

G
P

j

mj

L3
~w1�k � 0� � G

L3

X
k±0

eik´x ~F2k: �C6�

The continuous Fourier transform of the potential in equation (C6) gives, after straightforward manipulation,

~f �k� � G ~w�k� ~r 0�k�2
X

j

mjd�k�
" #

� G ~w�k� ~r�k�; �C7�

and thus, as required, the potential is the convolution of the total density, r , with the interaction potential, w . Of course, for w�R� � 21=R,

then ~w�k� � 24p=k2 and we recover Poisson's equation in Fourier space.

Substituting for rÄ 0(k) in equation (C5) and then using the result for FÄ 2k in equation (C6) gives the final result:

f�x� � G
X

jn

mjw1�x 2 xjn�2
G
P

j mj

L3
~w1�k � 0� � G

L3

X
j;k±0

eik´�x2xj�mj ~w2�k�: �C8�

The potentials w1 and w2 can be chosen so that both sums in equation (C8) converge rapidly.

For a given split of w in equation (C3), we can calculate wÄ 2(k) and hence efficiently calculate the potential at a point for a given

particle distribution. From the expression in equation (C8) we may also derive expressions with similar desirable convergence properties for

derivatives of the potential, such as the force and tidal field at x:

sf

xm1
xm2

¼xms

� G
X

jn

mj
sw1�r�

rm1
rm2

¼rms

����
r�x2xjn

� 1

L3

X
j;k±0

iskm1
km2

¼kms
eik´�x2xj�mj ~w2�k�

" #
: �C9�

For the first and second derivatives of w1(r) we have w1=rm � �w 01=r�rm and 2w1=rmrn � ��w 01=r� 0=r�rmrn � �w 01=r�dmn. From equation

(C9) we can immediately write

72f � G
X

jn

mj7
2w1�x 2 xjn�2

1

L3

X
j;k±0

k2 eik´�x2xj�mj ~w2�k�
" #

: �C10�

We can recast the first term as a Fourier series, since it is periodic; as before, the coefficients for the Fourier sum are the same as those for

the continuous transform. Using this result, we obtain

72f � G

L3

X
j;k

mj eik´�x2xj�
�

e2ik´x 072w1 d3x 0 2
X
j;k±0

k2 eik´�x2xj�mj ~w2�k�
" #

; �C11�

where the integral is over all space. Note that the first sum includes the mean k � 0 component. Equation (C11) leads directly to

72f � 2
G

L3

X
j;k

eik´�x2xj�mjk
2 ~w 2 lim

k!0
�k2 ~w2�k�

X
j

mj

( )
: �C12�

If the interaction potential is Coulombic on large scales, w , 21=R, then limk!0 k2 ~w2 � 24p, provided that w1=w2 ! 0 sufficiently

rapidly with increasing R (this condition is satisfied for any practical splitting choice). Equation (C12) then gives

72f � 4pGr; �C13�
including the negative mean density as in equation (C1).

The total potential energy of the N particles in the box including interactions with all images is

U � G

2

X
i; jn
jn±i

mimjw�xi 2 xjn� �C14�

(ignoring again temporarily the mean contribution to the peculiar potential in equation C2). We can make use of the same splitting in

equation (C3) and the results that follow from it for the potential, provided that the condition j ± i is observed. This is straightforward

to take into account in the real-space sum by directly omitting the terms i � j. The Fourier sum, however, expresses the long-range

component as a field which, to be correct at all locations, must contain the contribution of particle i. Measuring the potential at xi

using equation (C4) will therefore include the self-energy of particle i arising from the interaction potential w2. The self-energy

contribution from particle i to the Fourier sum is Gm2
i w2�R � 0�=2. Using equation (C8) we obtain, after a little manipulation, the

result

U � G

2

X
i; jn
jn±i

mimjw1�xi 2 xjn�2

ÿP
j mj

�2

L3
~w1�k � 0� � 1

L3

X
i;j;k±0

eik´�xi2xj�mimj ~w2�k�2
X

j

m2
j w2�R � 0�

24 35: �C15�
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C2 Practical issues in computing the Ewald sums

A number of choices are possible for the interaction splitting in equation (C3). Of primary interest is good convergence of both the real-

space and Fourier-space sums. It is also important to choose splitting functions which allow an efficient numerical scheme to be

constructed. The most commonly used is that given by Ewald (1921), but a number of others have been discussed in the literature (e.g.

Nijboer & de Wette 1957).

The Ewald scheme is a one-parameter family with w1�R� � 2erfc�hR�=R, and w2�R� � 2erf�hR�=R. The Fourier transform (in three

dimensions) of w2 is ~w2�k� � 24p e2k2=�4h2�=k2. The parameter h is chosen to optimize convergence. Nijboer & de Wette (1957) show that

both the real-space and Fourier-space series have the same rate of convergence if h � pp=L. Satisfactory results are obtained for a range of

values near this result. Machine accuracy (32 bit) can typically be achieved with this value of h by extending the sums in real space and

Fourier space to a radial distance of roughly five image cells or Fourier modes respectively. The analytic result is independent of the value

of h although the rates of convergence of the sums are affected. Increasing h causes a faster convergence of the real-space sum, whilst

requiring the accumulation of a greater number of terms in the Fourier series to achieve a given precision. If h deviates too much from the

optimal value, one of the sums will require the accumulation of a large number of terms for good convergence, and we will be faced with

the original computational problem which the splitting was introduced to solve.

Clearly, each computation of the potential (or force, etc.) requires O(N) operations, and so to find the force on each of N particles, for

example, requires O(N2) operations, and so is not competitive with other methods currently available. The present attraction of the method

is its simplicity and that it enables forces to be calculated to high precision.

Some improvement in computational efficiency can be obtained by noting that the Fourier sums in equations (C8) and (C14) can be

factorized. For equation (C8), for example, we can express
P

j;k±0 eik´�x2xj�mj ~w2�k� as
P

k±0 eik´x ~w2�k� �
P

j mj e2ik´xj �. The sum over j can

be pre-computed and stored for the small number of wavenumbers k required (typically a few hundred). This reduces the cost of the Fourier

sum to an O(N) operation for a fixed number of wavemodes and allows the parameter h to be increased, which reduces the work of the real-

space sum. Note that since w2 is a real, even function, its Fourier transform will also be real and even. This allows the complex exponential

to be reduced to a cosine for numerical computation of the sum. (The factorization just described is then only marginally more complicated

± see Section C4.)

C3 Relationship to the P3M method

The P3M algorithm uses an interaction splitting which can be described using the same terminology set out above. The splitting employed is

analogous in many ways to choosing a very large value of h . This reduces the range over which the real-space sum must be accumulated

and throws most of the work into the Fourier sum. In P3M the real-space sum is reduced to such an extent that the effective range is much

smaller than the periodic distance, L. Indeed, a different functional split is commonly used in which w1 is compact. This allows efficient

techniques to be used in which only nearby particles need be included in the real-space sum. Since the effective range of the real-space sum

is now much less than the period distance L, this part of the calculation now takes O(Nn) operations to compute, where n is the mean

number of particles within the range of the function w1. Provided n does not become too large (as it unfortunately will in gravitational

simulations as clustering develops), the real-space work is essentially O(N). Pushing much of the work into the Fourier domain is

advantageous only if efficient methods are available for accumulating the Fourier sum and if we can avoid the convergence problems

discussed above in accumulating forces from the Fourier components.

The Fourier part of the P3M method is best understood in terms of equation (C6) rather than equation (C8). The key to the

method lies in approximating the Fourier components FÄ 2k. Instead of calculating afresh the Fourier sum for each value of x for which

it is required, the result is interpolated from stored values discretized on a regular grid. Provided the field is adequately sampled, the

error in this procedure can be reduced to acceptable levels. The interaction splitting must be chosen such that the number of grid

points available is sufficient to represent the harmonic content of the field. Since the number of wavenumbers over which the field

must be known may now be very large (a consequence of the short range of the real-space sum), an efficient method for calculating the

Fourier components from the density field and interaction potential must be used. This is achieved by sampling the density field with a

uniform grid and using a FFT technique for obtaining the potential. Using an FFT also ensures well-determined convergence properties for

the Fourier sums.

C4 Formulñ for the Ewald method

Using the splitting described by Ewald, we will now write down explicit expressions for equations (C8) and (C14), which can be used to

compute the potential, its derivatives and the total potential.

We have w1 � 2erfc�hR�=R, w2 � 2erf�hR�=R and ~w2 � 24p e2k2=�4h2�=k2. [The error function, erf(x), is �2=pp�� x

0
e2t2

dt. Many

approximations to erfc suitable for efficient numerical computation exist in the literature and are often also available in mathematical

libraries on many current computers.] To calculate wÄ 1(0), we must take the limit of the transform of 21=R� erfc�hR�=R as k!0. This gives

~w1�0� � 2p=h2. The value of w2�0� � 2limR!0erf�hR�=R � 22h=
p
p. Recall that the Fourier modes are labelled by k � 2pl=L, where l

is an integer triple. Finally, define C�l� �Pj mj cos�2pl´xj=L� and S�l� �Pj mj sin�2pl´xj=L�. Putting all of this together, we find:

f�x� � 2G
X

jn

mj erfc�hr�=r

����
r�x2xjn

2
p
P

j mj

h2L3
� 1

pL

X
l±0

1

l2
�C�l� cos �2pl´x=L� � S�l� sin �2pl´x=L�� e2p2 l2=�L2h2�

( )
; �C16�
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and

U � 2
G

2

X
i;jn

jn±i

mimj erfc�hr�=r

����
r�xi2xjn

2
p
ÿP

j mj

�2

h2L3
� 1

pL

X
l±0

1

l2
�C2�l� � S2�l�� e2p2l2=�L2h2� 2

2hp
p

X
j m2

j

8<:
9=;: �C17�

Derivatives of f may be calculated trivially from equation (C16). We have:

f

xm
� G

X
jn

mj erfc�hr� � 2p
p
hr e2h2r2

� �
rm

r3

����
r�x2xjn

� 2

L2

X
l±0

lm

l2
�C�l� sin �2pl´x=L�2 S�l� cos �2pl´x=L��e2p2 l2=�L2h2�

( )
; �C18�

and

2f

xmxn
� G

X
jn

mj 2
4p
p
h3 e2h2r2 rmrn

r2
� erfc�hr� � 2p

p
hr e2h2r2

� �
dmn
r3

2 3
rmrn

r5

� �� �
r�x2xjn

(

� 4p

L3

X
l±0

lmln

l2
�C�l� cos �2pl´x=L� � S�l� sin �2pl´x=L�� e2p2l2=�L2h2�

)
: �C19�

Note: asymptotically erfc�x� , 1=�ppx� e2x2

.
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