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A B S T R A C T

We present the results of weak gravitational lensing statistics in four different cosmological

N-body simulations. The data have been generated using an algorithm for the three-

dimensional shear, which makes use of a variable softening facility for the N-body particle

masses, and enables a physical interpretation for the large-scale structure to be made.

Working in three dimensions also allows the correct use of the appropriate angular diameter

distances.

Our results are presented on the basis of the filled-beam approximation in view of the

variable particle softening scheme in our algorithm. The importance of the smoothness of

matter in the Universe for the weak lensing results is discussed in some detail.

The low-density cosmology with a cosmological constant appears to give the broadest

distributions for all the statistics computed for sources at high redshifts. In particular, the

range in magnification values for this cosmology has implications for the determination of

the cosmological parameters from high-redshift type Ia supernovae. The possibility of

determining the density parameter from the non-Gaussianity in the probability distribution

for the convergence is discussed.

Key words: methods: numerical ± galaxies: clusters: general ± cosmology: miscellaneous ±

gravitational lensing ± large-scale structure of Universe.

1 I N T R O D U C T I O N

1.1 Outline

We present the results of a study of the weak gravitational lensing

of light in four different cosmological models, using the algorithm

for the three-dimensional shear developed by Couchman, Barber

& Thomas (1999). Since weak lensing effects depend on the

angular diameter distances for the lenses and sources, and also the

specific distribution and evolution of matter, the results are sensi-

tive to the particular cosmological model.

In strong lensing studies, frequent use is made of the `thin-

screen approximation', in which the mass distribution of the lens

is projected along the line of sight and replaced by a mass sheet

with the appropriate surface density profile. Deflections of the

light from the source are then considered to take place only within

the plane of the mass sheet, making computations for the light

deflections simple. The simplicity of the thin-screen approxi-

mation has also lead to its frequent use in weak gravitational

lensing studies, where each of the output volumes from

cosmological N-body simulations is treated as a planar projection

of the particle distribution within it.

However, a number of problems can arise with two-dimensional

approaches, especially in weak lensing studies in which the large-

scale distribution of matter extending to high redshifts is

responsible for the lensing. Couchman et al. (1999) considered

some of the shortcomings, and were motivated to develop an

algorithm to compute the six independent components in three

dimensions of the second derivative of the gravitational potential

(the three-dimensional shear). In the method used in the present

work, for which the effects of lensing along lines of sight are

required, the two-dimensional `effective lensing potentials' (see

Section 2) are obtained by integrating the computed three-

dimensional shear components along the lines of sight. These

effective lensing potentials are used to construct the Jacobian

matrices which are recursively generated along the lines of sight,

and from the final Jacobian matrices the magnifications and two-

dimensional shear are determined.

A brief outline of this paper is as follows.

In Section 1.2 we summarize the previous weak gravitational

lensing methods by other authors.

In Section 2, the essential equations for gravitational lensing are
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explained, and the multiple lens-plane theory is described,

culminating in expressions for the magnification, convergence,

two-dimensional shear, and ellipticity, which are the weak lensing

outputs from the cosmological simulations.

Section 3.1 summarizes the three-dimensional shear algorithm,

and particularly the choice of the variable softening scale for the

particles. This feature limits the effects of isolated particles (not

representative of the large-scale structure), and builds in a physical

significance both to the choice of the softening scale, and to the

underlying form of the dark matter. We explain also how the

softening carefully limits the incidence of strong lensing events in

all the cosmologies. In Section 3.2 we describe the four

cosmological N-body simulations used in this work. In Section

3.3 we state how the simulation boxes are oriented to minimize

correlations in the large-scale structure between adjacent time-

outputs, and we describe the establishment of lines of sight

through the simulations, and the locations of the evaluation

positions for the shear within them. In Section 3.4 we explain how

the computed shear values are converted (after integration along

the lines of sight) to physical units, and the approximations we

have adopted in the method.

In Section 4.1 the Dyer±Roeder equation for the angular

diameter distances is introduced, and Section 4.2 summarizes the

results derived in Appendix A for the beam equation generalized

for all the cosmologies. This precedes the discussion (Section 4.3)

of magnifications obtainable in inhomogeneous universes with

different degrees of smoothness, and highlights the significance of

differences between researchers who adopt different approaches to

this subject.

Section 5 formally presents the weak lensing results. We first

(Section 5.1) attempt to see if the onset of structure formation can

be seen from the shear data, and briefly comment on the expected

behaviour of the developing shear. Secondly (Section 5.2), the

results for magnification, convergence, shear and ellipticity are

presented for all the cosmologies, compared and contrasted. We

consider the impact of the smoothness parameter on the results.

It may be possible to determine the density parameter, V0, from

the probability distribution and the skewness in the distribution for

the convergence, both of which may be measurable observation-

ally. In Section 6.1 we present our results for these quantities, and

compare them with others. The application to the determination of

the cosmological parameters from type Ia supernovae is

mentioned in Section 6.2.

In Section 7 the weak lensing statistics detailed in Section 5 are

summarized, together with the results of the non-Gaussianity in

the convergence.

We compare and contrast our results with other authors and

present our conclusions in Section 8. Of particular significance are

the common use of two-dimensional approaches by others, and the

use of either point mass particles or particles with small softening

scales, which introduce high values of magnification. These

authors often use the empty-cone approximation, rather than the

full-beam approximation, making comparisons difficult. This

latter point is discussed.

In Appendix A we state the generalized beam equation, and

derive the equations necessary for the numerical determination of

the angular diameter distances for all the cosmologies.

1.2 Previous work

Numerous methods have been employed to study weak lensing,

and throughout this paper we will make comparisons with

previous work by other authors. We summarize here the methods

which have been used by others.

JaroszynÂski et al. (1990) use a `ray-tracing' method to evaluate

the matter column density in a matrix of 1283 pixels for each of

their lens-planes. The boxes were generated using a particle±mesh

(PM) code in the standard cold dark matter (SCDM) cosmology,

and were of side-dimension 128 h21 Mpc, where h is the Hubble

constant in units of 100 km s21 Mpc21. By making use of the

assumed periodicity in the particle distribution orthogonal to the

line of sight, they translate the planes for each ray, so that it

becomes centralized within the plane of one full period in extent.

This removes any bias acting on the ray when the shear is

computed. Instead of calculating the effect of every particle on the

rays, the pixel column densities in the single period plane are

used, and they assume that the matter in each of the pixels resides

at the centre point of each pixel. They calculate the two two-

dimensional components of the shear (see Section 2 for the

definition of shear) as ratios of the mean convergence of the beam,

which they obtain from the mean column density. However, they

have not employed the net zero mean density requirement in the

planes, (described in detail by Couchman et al. 1999), which

ensures that deflections and shear can occur only when there are

departures from homogeneity. Also, the matter in the pixel through

which the ray is located is excluded. To follow the shearing across

subsequent planes, they recursively generate the developing

Jacobian matrix for each ray, in accordance with the multiple

lens-plane theory (see Section 2).

Wambsganss, Cen & Ostriker (1998) also use the `ray-tracing'

method in cosmological N-body simulations. The method is

applied to PM simulations of the SCDM cosmology, in which a

convolution method is used to combine large-scale boxes of

400 h21 Mpc and resolution 0.8 h21 Mpc, with small-scale boxes

of 5 h21 Mpc and the higher resolution of 10 h21 kpc. They

randomly orient each simulation box, and project the matter

contained within each on to a plane divided into pixels. They

choose the central 8 h21 Mpc � 8 h21 Mpc region through which to

shoot rays, but account for the deflections of the rays in terms of

all the matter in the plane of 80 h21 Mpc � 80 h21 Mpc: However,

to speed up the computation, a hierarchical tree code in two

dimensions is used to collect together those lenses (pixels) far

away, whilst treating nearby lenses individually. The code assumes

that all the matter in a pixel is located at its centre of mass. The

matter in each pixel, which measures 10 h21 kpc � 10 h21 kpc; is

assumed to be uniformly spread. By using the multiple lens-plane

theory, they show both the differential magnification probability

distribution, and the integrated one for 100 different source

positions at redshift zs � 3:0: One advantage of this type of ray-

tracing procedure is its ability to indicate the possibility of

multiple imaging, where different rays in the image plane can be

traced back to the same pixel in the source plane, and they are able

to compute the statistics of angular separations for multiple

images.

Marri & Ferrara (1998) use lens-planes up to redshifts of z � 10

for mass distributions determined by the Press±Schechter

formalism, and treat the particles as point-like masses with no

softening. They apply their ray-tracing method to three cosmol-

ogies with �VM;Vl;Vn� � �1; 0; 0�; (0.4, 0.6, 0) and (0.7, 0, 0.3).

(VM, Vl and Vn represent the density parameters for matter,

vacuum energy and the hot dark matter component respectively.)

The maximum number of lenses in a single plane is approximately

600, each having the appropriate computed mass value, and they

follow 1:85 � 107 uniformly distributed rays within a solid angle
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of 2:8 � 1026 sr, corresponding to a 420 � 420 arcsec2 field. The

final impact parameters of the rays are collected in an orthogonal

grid of 3002 pixels in the source plane. Because of the use of point

masses, their method produces very high magnification values,

greater than 30 for the Einstein±de Sitter cosmology. They have

also chosen to use a smoothness parameter �a � 0 in the redshift±

angular diameter distance relation (described in Section 4) which

depicts an entirely clumpy universe.

Jain, Seljak & White (1998; 2000) have made use of N-body

simulations generated using a parallel adaptive particle±particle,

particle±mesh (AP3M) code. The cosmologies simulated are the

same as the ones reported on here, but they have 2563 particles

and comoving box side dimensions of 85 h21 Mpc for their

Einstein±de Sitter cosmologies, and 141 h21 Mpc for the open and

cosmological constant models. For each plane, the projected

density, together with the appropriate redshift-dependent factors,

is Fourier-transformed, using periodic boundary conditions, to

obtain the shear in Fourier space. The two-dimensional shear

matrix is then computed on to a grid in real space by the inverse

Fourier transform. The size of the grid is chosen to be compatible

with the force-softening scale (the resolution) in the N-body

simulations, so that for sources at redshifts around 1, the angular-

scale size of the grid is less than, or of the same order as, the

angular-scale size of the force-softening at these redshifts.

Perturbations on the photon trajectories are computed and the

shear matrix interpolated to the photon positions, enabling the

Jacobian matrices to be computed by recursion. In view of the use

of a fine grid for the shear and deflection angle computations, they

are able to analyse their data on different scales, and are thus able

to determine the power spectrum in both the shear and the

convergence. This approach is very different from the approach

we follow which makes use of variable softening for the particles

depending on their particular environment, and which ensures that

most `rays' would pass entirely through regions of smoothed

density, thereby requiring the application of the full-beam

approximation. Jain et al. assume point particles interpolated on

to their grid, and use the empty-cone approximation.

Hamana, Martel & Futamase (2000) study weak lensing in

N-body simulations of three cosmologies with �V0; l0;s8� �
�1; 0; 1:2�; (0.3, 0.7, 0.85) and (0.3, 0, 0.90). (We now use V0 and

l0 to represent the present matter density and vacuum energy

density parameters respectively; s8 is the normalization on scales

of 8 h21 Mpc.) These were generated by a P3M algorithm, using

Fourier techniques on a 1283 lattice. The comoving simulation

box sizes were 128 Mpc, and the particles were given comoving

softenings of 300 kpc. Three simulations were performed for each

cosmological model, and boxes from the different simulations

combined to limit correlations in large-scale structure between

adjacent boxes. Each of the mass distributions in the simulation

boxes were then projected on to planes at the box redshift, and

Poisson's equation solved numerically on each of them. This was

done by first evaluating the surface density on to a 512 � 512 grid,

based on the particle positions, and then inverting Poisson's

equation using a Fast Fourier Transform (FFT) method. As the

multiple lens-plane theory was to be used for more than 107 rays

passing through each plane, the recursion algorithm was

simplified by assuming small deflections for the rays. This also

meant that the rays could be considered to pass through the grid

points, and travel, effectively, in straight lines through the entire

distance from the observer to the source plane. We have also made

this approximation in our own method.

An alternative to the conventional form of `ray-tracing' was

introduced by Refsdal (1970), who used `ray-tracing' with

calculations of the differential deflections of light rays around a

central ray to determine the distribution of magnifications.

Fluke, Webster & Mortlock (1999, 2000) have developed this

idea further as the `ray-bundle' method. The principle is to trace

the passage of a discrete bundle of light rays as it passes through

the deflection planes. The advantage of the method is that it

provides a direct comparison between the shape and size of the

bundle at the observer and at the source plane, so that the

magnification, ellipticity and rotation can be determined straight-

forwardly. The authors have selected a range of popular cosmol-

ogies, including the ones reported on here, and have produced

their own N-body simulation data sets using a P3M algorithm. For

each cosmology they have produced a number of independent

simulations to enable them to randomly choose a simulation box

for a particular epoch from any of the realizations. In this way,

correlations of large-scale structure between adjacent boxes are

avoided. They have run their simulations with 643 dark matter

particles, with box sizes ranging from 80 h21 Mpc to 164.3 h21

Mpc. Having randomly selected the boxes for a given cosmology,

the particle mass distributions are then projected on to planes at

the redshifts of the boxes. The authors construct approximately

50 000 bundles, each comprising eight rays, to shoot in random

directions through the planes, from the observer's location at

z � 0. The shooting area was limited to 50 � 50 arcsec2 to avoid

edge effects of the planes, and only matter within a single period

in the transverse direction is included in the planes. In addition, a

radius, typically 15 h21 Mpc centred around each bundle, is

chosen for the extent of the matter to be included in the deflection

angle computations. The projected masses are also considered as

point particles, so that very high magnification values can be

achieved in principle; however, the authors do not include bundles

which pass within
���
2
p

of the Einstein radius of any particle.

Because of their use of point masses, they use the empty-cone

approximation in the determination of the statistical distributions

of magnifications for the different cosmological models.

Premadi, Martel & Matzner (1998a) have introduced individual

galaxies into the computational volume, matching the two-point

correlation function for galaxies. They also assign morphological

types to the galaxies according to the individual environment, and

apply a particular surface density profile for each. Five different

sets of initial conditions were used for the simulations, so that the

individual plane projections can be selected at random from any

set. N-body simulations were produced for three cosmologies with

�V0; l0� � �1; 0�; (0.2, 0) and (0.2, 0.8) in boxes of comoving

side-dimension 128 h21 Mpc. They solve the two-dimensional

Poisson equation on a grid, and invert the equation using a FFT

method to obtain the first and second derivatives of the gravi-

tational potential on each plane. They also correctly ensure that

the mean surface density in each lens-plane vanishes, so that a

good interpretation of the effects of the background matter is

made. Their method uses beams of light, each comprising 65 rays

arranged in two concentric rings of 32 rays each, plus a central

ray. The multiple lens-plane theory then enables the distributions

of cumulative magnifications to be obtained.

Tomita (1998a,b) also uses a ray bundle method, but by

evaluating the gravitational potential at approximately 3000

locations between the observer and sources at redshift 5, he is

able to compute the weak lensing statistics without using the

multiple lens-plane theory. He has used N-body simulations

produced using a tree code with 323 particles in four different

cosmologies with �V0; l0� � �1; 0�; (0.2, 0.8), (0.2, 0) and (0.4, 0).
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In all of these, except the SCDM cosmology �V0 � 1; l0 � 0�; the

particles are treated as galaxy-size objects. In the SCDM

cosmology, 20 per cent of the particles are treated thus, whilst

80 per cent are given softening radii of 100 h21 kpc (model a),

40 h21 kpc (model b) and 20 h21 kpc (model c). Ray bundles are

formed from 5 � 5 rays arranged in a square, with separation

angles (fixed for each run) at between 2 arcsec and 1 deg. At each

of the 3000 positions between the observer and source, the

potential is evaluated at each ray position by translating each

simulation cube (using the periodic properties) so that the centre

of each bundle is located in the centre of each cube. In this way,

all the matter within a full period in extent contributes to the

calculation of the potential (although no account is taken of matter

beyond one period transverse to the line of sight). To avoid

spurious values of the potential arising from masses close to

evaluation positions, an average of the potential is taken by

integrating it analytically over the interval between adjacent

evaluation positions. The light propagation is then determined by

solving the null-geodesic equations, and the required statistics

constructed from shooting 1000 bundles through the flat

cosmologies, and 200 bundles through the open cosmologies.

2 T H E P R O PAG AT I O N O F L I G H T

In the case of multiple deflections of light by a series of projected

lens-planes, the Jacobian matrix develops in accordance with the

multiple lens-plane theory, which has been summarized by

Schneider, Ehlers & Falco (1992). Its form at redshift z � 0

enables all the lensed properties of light from distant sources to be

determined.

We follow, in outline, their description. For a system of N

lenses, the basic lens equation for a single lens, relating the

angular position of the source to that of the image, may be

generalized straightforwardly. If the position vector of the source

in the plane perpendicular to the line of sight at the source position

(the source plane) is h , and the position vectors of the image

positions in the various, N, deflection planes are j i, where i �
1;¼;N; then the lens equation may be written as

h � Ds

D1

j1 2
XN

i�1

Disâ i�ji�; �1�

where Di is the angular diameter distance to the ith lens, Dis is that

from the ith lens to the source, and aÃ i is the deflection angle at the

ith lens. To make equation (1) dimensionless, put

xi � ji=Di; �2�
and for the source,

y � xN�1 � h=Ds � h=DN�1: �3�
We also use the individual reduced deflection angles defined by

ai � Dis

Ds

â i: �4�

Then the displacement in the jth lens plane is

xj � x1 2
Xj21

i�1

Dij

Dj

â i�Dixi� � x1 2
Xj21

i�1

Ds

Dis

Dij

Dj

ai�Dixi�; �5�

or

xj � x1 2
Xj21

i�1

bijai�Dixi�; �6�

where

bij ;
Ds

Dis

Dij

Dj

: �7�

Then the full form of the ray-tracing equation is equation (6)

evaluated at the source plane:

y � x1 2
XN

i�1

ai: �8�

(The b ij factor disappears, because bis � 1 from its definition.)

The mapping of the source on to the image is given by the Jacobian

matrix, which relates small changes in the source to corresponding

small changes in the image seen on the first lens-plane:

A ;
y

x1

: �9�

Similarly, we may define Jacobian matrices appropriately at each

of the lens-planes:

A i ;
xi

x1

: �10�

We now define the derivative of the reduced deflection angle for

the ith lens by

U i ;
ai

xi

: �11�

By defining the `effective lensing potential' in terms of the

angular position, u i for the ith lens as an integral along the line-of-

sight direction, x3,

ci�ui� � Dds

DdDs

2

c2

�
f�Ddui; x3� dx3; �12�

in which c is the velocity of light, Ui can be shown to be equivalent

to the matrix of the second derivatives of the effective lensing

potential for the ith lens, and is therefore related to the second

derivative of the gravitational potential (the shear):

U i �
c i

11 c i
12

c i
21 c i

22

 !
; �13�

where the superscripts, i, denote the deflection plane index, and

where we have written

c11 ;
2c�u�

u2
1

; c12 ;
2c�u�
u1u2

; �14�

c21 ;
2c�u�
u2u1

; and c22 ;
2c�u�

u2
2

; �15�

in which the suffixes in the denominators refer to the coordinate

directions. Then the ray-tracing equation (8) gives

A total ;
y

x1

� I 2
XN

i�1

ai

x1

� I 2
XN

i�1

ai

xi

xi

x1

� I 2
XN

i�1

U iA i; �16�

where I is the identity matrix.

Thus the final Jacobian matrix can be evaluated at z � 0; since

the individual matrices can be obtained by recursion. Using

equation (6), they are just

A j � I 2
Xj21

i�1

bijU iA i �17�
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for the jth lens, and

A 1 � I : �18�
In our approach, the second derivatives of the two-dimensional

effective lensing potentials required for each deflection location,

are obtained by integration of the computed three-dimensional

shear values, i.e., the second derivatives of the peculiar

gravitational potential. It is necessary to work with the peculiar

gravitational potential, because the shearing of light arises from

deviations from homogeneity; in a pure Robertson±Walker uni-

verse we would expect no deviations. Couchman et al. (1999)

derive the expression for the peculiar gravitational potential, f ,

in terms of the gravitational potential, F, and the mean density,

rÅ:

f � F 2 2=3pGa2 �rx2; �19�
G is the universal gravitational constant, x is the position vector,

and a is the expansion factor for the universe (so that ax is the

comoving position vector). This result corresponds to a system

with zero net mass on large scales and immediately gives

f

xi

� F

xi

2 4=3pGa2 �rxi �20�

and

2f

xixj

� 2F

xixj

2 4=3pGa2 �rdij: �21�

Equation (21) shows how the real result for the shear, 2f=xixj;
based on the peculiar gravitational potential, is related to the value

of 2F=xixj through the subtraction of the term in the mean

density.

Equation (21) can now be evaluated explicitly for the three-

dimensional shear. The integral solution of Poisson's equation is

well-known, and the solution can be easily differentiated twice to

give

2f�R�
xixj

� G

���
r�R 0�
jR 2 R 0j3 dij 2

3r�R 0��xi 2 x 0i��xj 2 x 0j�
jR 2 R 0j5

� �
d3R 0

2 4=3pGa2 �rdij: �22�
(We have introduced R and R 0 for the evaluation position for the

shear, and the matter positions respectively. In practice, of course,

the triple integral over all space would be replaced by a

summation.) The two-dimensional second derivatives of the

effective lensing potentials required for the Jacobian matrices

then follow immediately from equation (12) (using spatial rather

than angular coordinates):

cij �
DdDds

Ds

´
2

c2

�
2f�x3�
xixj

dx3: �23�

Dd, Dds, and Ds are the angular diameter distances from the

observer to the lens, the lens to the source, and the observer to the

source, respectively. The integration is along the coordinate

direction, x3, and the subscripts i and j now refer to any of the

three coordinate directions. This equation applies quite generally

for any deflection location, so the deflection plane index has been

dropped for clarity.

We now summarize the main equations we shall need for weak

lensing, which are obtainable from the final Jacobian matrix. The

final emergent magnification, m , may be computed after passage

through an entire box or set of boxes, and is

m � �detA �21: �24�
The convergence, k , is

k � 1
2
�c11 � c22�; �25�

and is therefore obtainable from the diagonal elements of the

Jacobian matrix.

The two-dimensional shear, g , in each line of sight, is given by

g2 ; 1
4
�c11 2 c22�2 � c2

12: �26�
(We may take c12 � c21; because we are dealing with a weak

shear field which is smoothed by the variable particle softening,

ensuring that the gravitational potential and its derivatives are

well-behaved continuous functions.)

From equation (24), and these definitions,

m � �1 2 c11 2 c22 � c11c22 2 c2
12�21; �27�

or

m � 1

�1 2 k�2 2 g2
: �28�

In the presence of convergence and shear, a circular source

becomes elliptical in shape, and the ellipticity, e , defined in terms

of the ratio of the minor and major axes, becomes

e � 1 2
1 2 k 2 g

1 2 k� g
; �29�

which reduces to

e . 2g�1� k 2 g� � O�k3; g3� �30�
in weak lensing.

In our method, the evaluation of the second derivatives of the

two-dimensional effective lensing potentials is obtained from

integration of the computed three-dimensional shear values at a

large number of evaluation positions along lines of sight. The

multiple lens-plane theory then enables distributions of the magni-

fication, ellipticity, convergence and shear at redshift z � 0 to be

computed for light rays traversing the set of linked simulation

boxes starting from the chosen source redshift. The ability to

apply the appropriate angular diameter distances at every evalu-

ation position avoids the introduction of errors associated with

planar methods, and also allows the possibility of choosing source

positions within a simulation box if necessary.

3 P R O C E D U R E

3.1 The three-dimensional shear algorithm

Couchman et al. (1999) describe in detail the algorithm for the

computation of the elements of the matrix of second derivatives of

the gravitational potential. The algorithm is based on the standard

P3M method (see Hockney & Eastwood 1988), and uses an FFT

convolution method. It computes all of the six independent shear

component values at each of a large number of selected evaluation

positions within a three-dimensional N-body particle simulation

box. It has a computational cost of order N log2 N, where N is the

number of particles in the simulation volume, and for ensembles

of particles, used in typical N-body simulations, the rms errors in

the computed shear component values are typically ,0.3 per cent.

In addition, the shear algorithm has the following features.
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(A) The algorithm uses variable softening designed to distribute

the mass of each particle within a radial profile depending on its

specific environment. By virtue of this facility, we have been able

to choose the softening such that light rays feel the existence of a

smooth mass distribution. Each particle may be assigned its own

softening-scale parameter, depending on the particle number-

density in its environment. In this way, it can be used to minimize

the effects of isolated single particles, whilst the smoothed denser

regions are able to represent the form of the large-scale structure.

The parameter we have chosen to delineate the softening scale for

each particle is proportional to l, where 2l is the radial distance to

the particle's 32nd nearest neighbour. The value of l has been

evaluated for every particle by using a smoothed particle

hydrodynamics (SPH) density program for each simulation box,

and is read in by the shear code along with the particle position

coordinates.

The maximum softening is allowed to be of the order of the

mesh dimension for isolated particles, which is defined by the

regular grid laid down to decompose the short- and long-range

force calculations. In this way, individual isolated particles are

unable to strongly influence the computed shear values, in accord-

ance with our need to study the broad properties of the large-scale

structure, rather than the effects of individual particles, which are

not representative of physical objects.

For the minimum softening scale we wanted the softening to

reflect the large-scale structure in the simulations, and so we based

our choice on estimates of the Einstein radii for large clusters of

particles. Using the dimensionless angular diameter distances in

terms of the present value of the Hubble parameter, H0, i.e., rd

; H0

c
Dd

ÿ �
; rds ; H0

c
Dds

ÿ �
; and rs ; H0

c
Ds

ÿ �
; for the observer to

the lens, the lens to the source, and the observer to the source,

respectively, the Einstein radius, RE, becomes

RE � 8:6 � 1023 h21N
1
2

rdrds

rs

� �1
2

Mpc �31�

for a cluster of N particles, each of mass 1:29 � 1011 M( (see

Section 3.2), where h is the Hubble parameter in units of

100 km s21 Mpc21. Substituting values for the angular diameter

distance factors then gives a maximum value of RE � 2:84 �
1023 h21N

1
2 Mpc for a source at redshift zs � 1 in the SCDM

cosmology. This occurs for a lens at redshift zd � 0:29: Thus, for a

cluster of 1000 particles, RE � 0:089 h21 Mpc: For a source at

redshift 3.6, the maximum value of RE is 0.108 h21 Mpc and

occurs for a lens at redshift 0.53. Following this approach, we

therefore set a working minimum value for the variable softening

of 0.1 h21 Mpc, equivalent to 1023 � �1� z� in box units, where z

is the box redshift.

The corresponding values for RE in the other cosmologies, for

N � 1000; are as follows.

For V0 � 0:3; l0 � 0; the maximum value of RE is 0.093 h21

Mpc for zs � 1; and occurs for zd � 0:32: For zs � 3:6; the

maximum value of RE is 0.115 h21 Mpc, and occurs for zd � 0:58:
For V0 � 0:3; l0 � 0:7; the maximum value of RE is 0.104 h21

Mpc for zs � 1; and occurs for zd � 0:36: For zs � 3:6; the

maximum value of RE is 0.142 h21 Mpc, and occurs for zd � 0:67:
Consequently, we used throughout a minimum softening of

0.1 h21 Mpc which is always greater than, or similar to, the

maximum value of the Einstein radius for a cluster of 1000

particles. At the same time, the softening scale is approximately of

galactic dimensions, giving a realistic interpretation to the choice.

We have also accounted for the effects of the different numbers of

particles per box in the different cosmological simulations. The

variable softening scale for each particle has been retained at the

same level in all the cosmologies, so that the same mass value is

contained within it. Thus, around small-particle clusters there

would be differences in the softening from cosmology to

cosmology, but around large clusters, where the shearing is likely

to be most important, the differences would be tiny.

Couchman et al. (1999) have investigated the sensitivity of

weak lensing results to the input softening, finding differences

only in limited numbers of lines of sight at the high-magnification

end of the distributions.

(B) The shear algorithm works within three-dimensional simu-

lation volumes, rather than on planar projections of the particle

distributions, so that angular diameter distances to every evalu-

ation position can be applied. It has been shown (Couchman et al.

1999) that in specific circumstances, the results of two-dimensional

planar approaches are equivalent to three-dimensional values inte-

grated throughout the depth of a simulation box, provided the

angular diameter distance is assumed constant throughout the

depth. However, by ignoring the variation in the angular diameter

distances throughout the box, errors up to a maximum of 9 per

cent can be reached at a redshift of z � 0:5 for SCDM simulation

cubes of comoving side 100 h21 Mpc. (Errors can be larger than

this at high and low redshifts, but the angular diameter distance

multiplying factor for the shear values is greatest here for sources

we have chosen at a redshift of 4.)

(C) The shear algorithm automatically includes the contribu-

tions of the periodic images of the fundamental volume,

essentially creating a realisation extending to infinity. Couchman

et al. (1999) showed that it is necessary to include the effects of

matter well beyond the fundamental volume in general (but

depending on the particular particle distribution), to achieve

accurate values for the shear. Methods which make use of only the

matter within the fundamental volume may suffer from inadequate

convergence to the limiting values.

(D) The method uses the peculiar gravitational potential, f ,

through the subtraction of a term depending upon the mean

density. Such an approach is equivalent to requiring that the net

total mass in the system be set to zero, and ensures that we deal

only with light ray deflections arising from departures from

homogeneity.

3.2 The Hydra N-body simulations

The three-dimensional shear code can be applied to any three-

dimensional distribution of point masses confined within a cubic

volume, and produces shear values as if the fundamental volume

were repeated indefinitely to represent a three-dimensional

periodic distribution of masses. Each particle may be assigned

an individual mass, although in the tests and our application of the

code, all the particles were assumed to be dark matter particles

with the same mass.

The code has been applied to the data bank of cosmological

N-body simulations provided by the Hydra Consortium (http://

hydra.mcmaster.ca/hydra/index.html) and produced using the

`Hydra' N-body hydrodynamics code (Couchman, Thomas &

Pearce 1995). Simulations from four different cosmologies were

used, which will be referred to as the SCDM, TCDM, OCDM and

LCDM cosmologies. Each of the simulations used a cold dark

matter-like spectrum, and the parameters used in the generation

and specification of these cosmological simulations are listed in

Table 1.
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V0 and l0 are the present-day values of the density parameter

and the vacuum energy density parameter respectively, so that the

SCDM and TCDM cosmologies are representative of Einstein±

de Sitter universes, whereas the OCDM cosmology represents a

low-density, open universe, and the LCDM a low-density, but

spatially flat universe with a cosmological constant. The power

spectrum shape parameter, G, is set to 0.5 in the SCDM cos-

mology, but the empirical determination (Peacock & Dodds 1994)

of 0.25 for cluster scales has been used in the other cosmologies.

In each case, the normalization, s8, on scales of 8 h21 Mpc has

been set to reproduce the number density of clusters (Viana &

Liddle 1996). Since gravity-only simulations have been used, the

value of the Hubble parameter is arbitrary.

In the SCDM and TCDM cosmologies, the number of particles

is 1283, leading to individual dark matter particle masses of

Mpart � 1:29 � 1011 h21 M(: In the low-density universes, the

number of particles is 0.3 times the number in the critical-density

universes, leading to the same individual particle masses. The

simulation output times were chosen so that consecutive simu-

lation boxes may be snugly abutted; the side-dimensions are

100 h21 Mpc in every case. Consequently, there are different

numbers of time-outputs to a given redshift value for the different

cosmologies. For a nominal source redshift of zs � 4 (which is the

furthest extent of our weak lensing analysis), 33 simulation boxes

were abutted to a redshift of 3.90 in the SCDM cosmology, 33 to a

redshift of 3.93 in the TCDM cosmology, 41 to a redshift of 4.00

in the OCDM cosmology, and 48 to a redshift of 3.57 in the

LCDM cosmology. (The number of boxes has no bearing on the

weak lensing statistics.)

3.3 Orientation and lines of sight

Each time-output in a given simulation run is generated using the

same initial conditions, so that a particular structure (although

evolving) occurs at the same location in all the boxes, and is

therefore repeated with the periodicity of the box. To avoid such

obvious and unrealistic correlations, we have arbitrarily translated,

rotated (by multiples of 908) and reflected each time-slice, about

each coordinate axis, before linking them together to form the

continuous depiction of the universe back to the source redshift.

To follow the behaviour of light rays from a distant source

through the simulation boxes, and to obtain distributions of the

properties at z � 0; we construct a regular rectangular grid of

directions through each box. Since there are likely to be only

small deflections, and the point of interest is the statistics of output

values, each light ray is considered to follow one of the lines

defined by these directions through the boxes. The evaluation

positions are specified along each of these lines of sight.

We have selected 1000 evaluation positions on each of

100 � 100 lines of sight, which is well matched to the minimum

variable softening, giving adequate sampling in the line-of-sight

direction; the method has been tested using up to a total of 4 � 106

lines of sight, and we have found that whilst using a larger number

of lines of sight smoothes the distribution plots for the magni-

fication and shear at the high-magnification end and gives rise to

higher maximum values of the magnification, the statistical widths

of the plots are virtually unchanged. Since we are dealing with

weak lensing effects and are interested only in the statistical

distribution of values, these lines of sight adequately represent the

trajectories of light rays through each simulation box. It is

sufficient also to connect each `ray' with the corresponding line of

sight through subsequent boxes in order to obtain the required

statistics of weak lensing. This is justified because of the random

re-orientation of each box performed before the shear algorithm is

applied.

3.4 Conversion factors and approximations in the method

The second derivatives of the two-dimensional effective lensing

potentials are obtained from the three-dimensional second

derivatives of the peculiar gravitational potential by integration,

in accordance with equation (23). The integration of the three-

dimensional shear values has been made in small steps (0.02 of the

box depth) along each line of sight, enabling the weak lensing

properties to be determined from the Jacobian matrices and

recorded at 50 evenly spaced locations along each line of sight in

every simulation box. To evaluate the absolute second derivatives

of the effective lensing potentials, the appropriate scaling factor is

introduced, which applies to the simulation box dimensions. From

equation 23, the factor B�1� z�2rdrds=rs can be extracted, where

B � �c=H0��2=c2�GMpart � �comoving box depth�22: For the

simulation boxes used, which have comoving dimensions of

100 h21 Mpc, B � 3:733 � 1029; and the �1� z�2 factor occurs to

convert the comoving code units into physical units. (The step

length for the integrations in each box is left as a code parameter,

so that it may be varied at will, although in the analysis reported

here, the step length was invariably 0.02�the box depth.)

The procedure to obtain the two-dimensional second derivatives

of the effective lensing potentials involves a number of

approximations.

First, it is assumed that the angular diameter distances required

for equation (23) vary linearly throughout each step length

(0.02�the box depth). They are, however, evaluated exactly at the

50 step positions through each box.

Second, in our approach we assume that, although each

simulation box is generated as a single simulation output-time

representation, the angular diameter distances vary throughout the

depth of each box, as they would in the real Universe.

Third, as mentioned in the previous section, we assume only

weak deflections for light rays, so that they are assumed to follow

the straight lines of sight represented by the grid points of the

evaluation positions. Since we are interested only in the statistics

of lensing within large-scale structure simulations, this is a

perfectly acceptable practice.

Finally, we have made use of a weak lensing approximation for

the computation of the intermediate Jacobian matrices. The full

form for the final Jacobian matrix (equation 16) is computed by

recursion, by including the intermediate matrices given by

equations (17) and (18). Expanding equation (16) fully involves

second-order and higher order terms, arising from the cross

multiplication of the intermediate Jacobian matrices, the distance

factors represented by b ij, and the matrices Ui. For weak lensing in

which all the c ij are much less than unity, the full form for Atotal

Table 1. Parameters used in the generation of the four different
cosmological simulations. The individual particle masses, Mpart �
1:29 � 1011 h21 M(; are the same in all the cosmologies.

Cosmology V0 l0 G s8 No. of Box side
particles (h21 Mpc)

SCDM 1.0 0.0 0.50 0.64 1283 100
TCDM 1.0 0.0 0.25 0.64 1283 100
OCDM 0.3 0.0 0.25 1.06 863 100
LCDM 0.3 0.7 0.25 1.22 863 100
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simplifies considerably to

A total . I 2
XN

i�1

U i: �32�

This is the form used; strong lensing events will still be recorded

as such, but using this approximation, the component values in

Atotal will not be accurate in strong lensing cases. However, the

incidence of strong lensing events is likely to be very small,

because of our choice of the softening scale (see Section 4.3). This

being the case, any strong lensing events will not adversely affect

the weak lensing statistics determined in our analysis.

4 A N G U L A R D I A M E T E R D I S TA N C E S I N

I N H O M O G E N E O U S U N I V E R S E S

4.1 The Dyer±Roeder equation

Our three-dimensional approach allows the use of the appropriate

angular diameter distances at every single evaluation position.

This is not possible in two-dimensional approaches, where it is

assumed that all the lensing mass in a box is projected on to a

plane at a single angular diameter distance.

Since the angular diameter distances depend very much on the

distribution of matter and the particular cosmology, it is necessary

to have available appropriate values for the angular diameter

distances for the particular distribution of matter in the simulation

data set being investigated.

By considering the universe to be populated by randomly

distributed matter inhomogeneities, but resembling the Robertson-

Walker, Friedmann±LemaõÃtre model on large scales, a second-

order differential equation is obtained for the angular diameter

distance, D, in terms of the density parameter, V0, for the uni-

verse, the vacuum energy density parameter, l0, and the redshift,

z, of the source. Dyer & Roeder (1973) made assumptions about

the type of matter distribution to obtain a more practical equation

for l0 � 0 cosmologies. They assumed that a mass fraction, aÅ
(called the smoothness parameter), of matter in the universe is

smoothly distributed, and that the fraction �1 2 �a� is bound into

clumps. Then the equation for the angular diameter distance (with

l0 � 0� is:

�z� 1� �V0z� 1� d2D

dz2
� 7

2
V0z� V0

2
� 3

� �
dD

dz

� 3

2
�aV0 � jsj2

�1� z�5
" #

D � 0; �33�

in which s is the optical scalar for the shear, introduced by the

matter distribution around the beam.

In order to apply equation (33), Dyer & Roeder (1973)

considered the following scenarios. They considered a universe in

which all the matter is bound into clumps, so that �a � 0; and in

which the light beam passes far away from the clumps. This is

described as light propagating through an `empty cone', and gives

rise to maximal divergence of the beam. The opposite scenario has

�a � 1; i.e., an entirely smooth universe. Here the smooth matter

distribution is present within the beam, giving a `full cone', or

`filled beam' approximation.

We have considered whether the shear along individual lines of

sight is able to significantly affect the chosen values for the

angular diameter distances. Our work has been conducted using

cosmological simulations in which the distributions of matter are

smooth, and we show in Section 5.2 that the effects are negligible.

With s , 0; therefore, equation (33) immediately reduces to the

well-known Dyer±Roeder equation,

�z� 1��V0z� 1� d
2D

dz2
� 7

2
V0z� V0

2
� 3

� �
dD

dz
� 3

2
�aV0D � 0;

�34�
which can be solved analytically for V0 � 1; l0 � 0; and arbitrary

aÅ .

4.2 Generalization of the Dyer±Roeder equation

Starting from the generalized beam equation, quoted by Linder

(1998a, b), we have generalized the form of the Dyer±Roeder

equation to apply to all the cosmologies we have simulated. This

was necessary because solutions for the angular diameter

distances were required in the LCDM cosmology containing a

vacuum energy density. The procedure to generalize the Dyer±

Roeder equation is described fully in the appendix, and solutions

of the final equation were obtained numerically. Fig. 1 shows the

result of solving the generalized equation, with �a � 1; in the

different cosmologies, for a source redshift of zs � 3:6; and Fig. 2

shows the values of the angular diameter distance multiplying

Figure 1. The angular diameter distance, rd, for three of the cosmologies

used here (see Table 1), assuming a source redshift of zs � 3:6; and �a � 1:

The maxima of the curves occur at redshifts of 1.24 (SCDM), 1.88

(OCDM) and 1.61 (LCDM).

Figure 2. The angular diameter distance multiplying factor, rdrds=rs; in

three of the cosmologies used here (see Table 1), assuming a source

redshift of zs � 3:6; and �a � 1: The maxima of the curves occur at

redshifts of 0.53 (SCDM), 0.58 (OCDM) and 0.67 (LCDM).
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factor, rdrds=rs (which we now denote by R), also for �a � 1: It is

clear from this plot that the angular diameter distance multiplying

factor is considerably higher in the LCDM cosmology than the

other cosmologies, and we shall comment further on this in regard

to the weak lensing statistics in the discussion of our results in

Section 7. When �a � 0; the values are lower than for �a � 1; we

have tabulated the ratios R� �a � 1�=R� �a � 0� for the different

cosmologies in Table 2.

4.3 Magnification in inhomogeneous universes

Later, in Section 7, we make comparisons of our results with those

of other workers, who may use either the full-beam or empty-

beam approaches for the propagation of light. We find it difficult

to make meaningful comparisons with results obtained using the

empty-beam approach, because the magnification distributions,

for example, may be quite different, depending on the approach

used. We therefore now consider the effects of inhomogeneities, in

the different approaches, which are described loosely in terms of

Dyer & Roeder's smoothness parameter, aÅ . We follow the line of

reasoning given by Schneider et al. (1992).

Consider our inhomogeneous universe to be on average, i.e., on

large scales, homogeneous and isotropic, so that the average flux

from a source at redshift z and luminosity L will equal the flux,

SFL, observed in a smooth Friedmann±LemaõÃtre universe without

local inhomogeneities:

kSl � SFL � L

4p� �DL�z��2 : �35�

DÅ L(z) is the luminosity distance in the smooth Friedmann±

LemaõÃtre model, and is the mean of the luminosity distance values

in an inhomogeneous universe including the constraints of flux

conservation. Thus DÅ L(z) can be related to the Dyer±Roeder

angular diameter distance, Ds, in an entirely smooth universe (with

�a � 1� :
�DL�z� � �1� z�2Ds�z; �a � 1�: �36�

Now the magnification, m , is just the ratio of the flux actually

observed in the image of a source and the flux which the same

source would produce if observed either through a completely

smooth cone or through an empty cone without deflection. Then

equation (35) straightaway gives, for the mean magnification in

terms of the appropriate Dyer±Roeder angular diameter distances,

kml � Ds�z; �a�
Ds�z; �a � 1�
� �2

: �37�

Clearly, the magnification values derived in this way depend on

the approximation used, and specifically the value of aÅ . For

example, rays passing close to clumps or through high-density

regions will result in magnification in any approximation. If the

empty-cone approximation is used, then m will be greater than 1,

and if the full-cone approximation is used, then m will be greater

than the mean magnification. From equation (37) it follows

immediately that the mean magnifications, kmel and km fl, in the

empty-cone and full-beam approximations respectively are

kmel � Ds�z; �a � 0�
Ds�z; �a � 1�
� �2

�38�

and

kmfl � 1: �39�
kmel $ 1 because Ds�z; �a � 0� $ Ds�z; �a � 1� at all redshifts in

all of our cosmologies. This is an important result for advocates of

the empty-beam approximation, particularly those working with

distributions of point mass particles, because by evaluating

numerically the angular diameter distance factors in the different

cosmologies (see Appendix A), it immediately follows that

kmel�OCDM� # kmel�LCDM� # kmel�SCDM�: �40�
Pei (1993) succeeded in calculating the statistical properties of the

magnifications due to a random distribution of point mass lenses

using the assumption that the total magnification is a result of

multiplication of the magnifications produced at each redshift

interval. He found that the mean magnification as a function of

redshift was exponential in terms of the optical depth, t(z):

kme�z�l � exp�2t�z��: �41�
[The optical depth is the fraction of the sky covered by circles of

Einstein radii between the observer and the specified redshift, and

is therefore dependent on the cosmology or the distribution and

density of matter. Pei (1993) gives an expression for the optical

depth at redshift z in terms of the Dyer±Roeder smoothness

parameter and the cosmological density parameter for the point

mass lenses in the SCDM cosmology.] Although these are useful

results, interpretation of the magnification distributions in the

empty-cone approximation for different cosmologies is often

complicated by the high-magnification tails in the distributions

which arise from light rays passing close to point mass particles.

Rauch (1991) set up a random distribution of point masses and

performed Monte Carlo simulations to calculate the resulting

amplification probability distributions. He then fitted the distribu-

tion by an analytical expression for the probability which was

given only in terms of the mean magnification. Thus, for a given

mean magnification, the distribution curves would be identical,

and almost certainly somewhat unrealistic. However, since the

mean magnification for sources at a given redshift is dependent on

the cosmology, the actual distribution curves are able, in principle,

to distinguish between cosmologies.

The minimum magnification in the empty-cone approximation is

me;min � 1: �42�
Thus rays passing through voids will have m � me;min � 1 in the

empty-cone approximation, since the rays will be far from all

concentrations of matter, and will satisfy the empty-cone conditions.

In the full-cone approximation however, the magnification for

rays passing through voids will be less than or equal to 1, because

the rays will suffer divergence, and the minimum value will be

mf;min �
D�z; �a � 1�
D�z; �a � 0�
� �2

# 1: �43�

Table 2. The minimum values of aÅ , discussed in
Section 5.2, which occur at z � 0; and the ratios of
the R factors at the peaks of the curves in the
different cosmologies, assuming a source redshift
of 3.6.

Cosmology Minimum aÅ R� �a � 1�=R� �a � 0�
SCDM 0.83 1.0408
TCDM 0.88 1.0204
OCDM 0.80 1.0241
LCDM 0.82 1.0414
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From this equation, we can again make comparisons amongst our

cosmologies. Fig. 3 plots the value of m f,min from this equation

versus redshift for the different cosmologies, and immediately we

can see that

mf;min�SCDM� # mf;min�LCDM� # mf;min�OCDM� �44�

for all redshifts.There are two points to note about this result.

First, the minimum magnification values will only rarely (if ever)

be seen, because this would require the rays to pass entirely

through the most underdense regions. For this reason the values

may be treated only as lower bounds for the computed values.

Comparisons between the computed minima and these analytic

values are shown in Table 3. As required, the computed values are

consistently greater than the theoretical minima. Second, the

values say nothing about the distribution of magnifications in any

cosmology; it is not necessary, for example, for the cosmology

producing the lowest minimum magnification to have the broadest

range for the probability distribution. Consequently, the results

reported in Section 5 require only that the minimum magnifica-

tions satisfy the minimum theoretical bounds, and may not relate

in any specific way to results of other workers using point mass

particles in an empty-cone scenario. This point is discussed further

in Section 7.

5 W E A K L E N S I N G R E S U LT S I N T H E

D I F F E R E N T C O S M O L O G I E S

5.1 The formation of structure

The formation of structure occurs at different rates in the different

cosmologies. Richstone, Loeb & Turner (1992), for example,

considered the spherical collapse of density perturbations, starting

from an initial Gaussian distribution, and found that the rate of

cluster formation as a function of redshift depended crucially on

the value of V0. This has been confirmed by, for example,

Bartelmann, Ehlers & Schneider (1993). Lacey & Cole (1993),

starting from the basic Press-Schechter formulñ, derived an

equation for the merger rates of virialized haloes in hierarchical

models, which again showed the rates to be crucially dependent on

V0. Later, Lacey & Cole (1994) compared their analytical results

with the merger rates seen in N-body particle simulations for the

SCDM cosmology, and found good agreement for this cosmology.

In addition, their analytical result was applicable to arbitrary

values of V0, and more general power spectra.

Peebles (1993) summarizes the evolution of structure in the

Press-Schechter approximation, which provides the number

density for collapsed objects by mass scale. This can be

evaluated in terms of the rms mass fluctuation, s r, at a fixed

comoving scale, and so is redshift dependent. For V0 close to 1,

sr / �1� z�21, and determines the evolution of the comoving

number density of clusters. On this model, half of the present-day

clusters would have formed later than z , 0:1; and 90 per cent

would have formed later than z , 0:3: This rapid evolution at late

times in an Einstein±de Sitter universe is seen also in N-body

simulations. In low-density universes the time evolution of s r is

slower at low redshift, and this reduces the predicted rate of

cluster formation at late times. The Press-Schechter approxima-

tion also underestimates the final number density for clusters.

Carroll, Press & Turner (1992) describe clearly the roÃle of the

cosmological constant in the rate of structure formation. As V0 is

reduced from unity, the rate of growth is suppressed, but

somewhat less so in the presence of a cosmological constant.

Thus, in the open case, linear growth stops when �1� z� , V21
0 ;

when the universe effectively becomes curvature-dominated, but

growth stops more recently, when �1� z� , V
21

3

0 ; in the flat case,

when the universe effectively becomes dominated by the cosmo-

logical constant.

There are clear qualitative differences between Einstein±de

Sitter universes and open models from N-body simulations. There

is much more dominance of clusters and groups of galaxies at

earlier times in the open models, which are then frozen in;

however, open universes do not display so prominently the large-

scale filaments and other irregular structures which occur in

V0 � 1 universes. Flat cosmologies with a cosmological constant

are intermediate between these cases. It should be mentioned at

this point that the results of N-body simulations require normal-

ization against observations; whilst the foregoing description of

structure formation rates is not very sensitive to the shape

parameter, G, in the power spectrum, both G and the form of the

initial conditions (for example, Gaussian or non-Gaussian) may

affect the resulting abundances on different scales. For example,

the SCDM model fails to reproduce correctly the shape of the

Figure 3. The minimum magnification values versus source redshift for

the filled-beam approximation in three different cosmologies.

Table 3. The analytical minimum magnification values in
the filled-beam approximation for the different cosmol-
ogies, and the computed values from the simulations. It is
necessary only that the computed values should be larger
than the minima, since the theoretical minima will not, in
practice, be seen.

Source redshift m f,min (analytic) m f,min (computed)

SCDM/TCDM

0.5 0.925 0.955
1.0 0.789 0.903
2.0 0.566 0.833
4.0 0.320 0.749
OCDM

0.5 0.973 0.980
1.0 0.915 0.951
2.0 0.786 0.889
4.0 0.419 0.792

LCDM

0.5 0.966 0.977
1.0 0.926 0.879
2.0 0.685 0.825
4.0 0.580 0.715
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galaxy correlation function on scales of tens of Mpc, using

G � 0:5, but the TCDM model, with G � 0:25 does much better.

We now consider the values of the computed three-

dimensional shear in each time-slice, and their development

with time, to see whether comparisons may be made with the

development of structure in the different cosmologies. It is also

informative to assess at what point (or in which simulation boxes)

the maximum contributions to properties such as the magnifica-

tion may occur.

By simply taking the rms values of specified computed

components, it is possible, in a simplistic way, to obtain values

which characterize each time-slice, independent of its redshift.

This is done (a) before integration along the line of sight (which

would be necessary to obtain the two-dimensional effective

lensing potentials, from which the magnifications are obtained),

(b) before conversion to physical units (which involve factors to

convert from the code units, and factors which derive from the

evolving box dimensions), and (c) before the application of

the appropriate angular diameter distance factors (required in the

application of the multiple lens-plane theory, described in

Section 2). Figs 4±7 show the results for the SCDM, TCDM,

OCDM and LCDM cosmologies respectively. In each, the middle

curve shows the rms value in each time-slice of the sum of the first

two diagonal elements of the shear matrix, the top curve shows the

mean of only the high values of these elements, and the bottom

curve shows the mean of the high values for one of the off-

diagonal elements. (The high values in each case are those more

than 1s above the mean in the rms values.) The growth in the

values with time is clearly seen in each cosmology.

In Fig. 8 we have combined the data for all the different

cosmologies. The figure shows the directly computed rms values,

as above.The plots can be understood in terms of the discussion at

the beginning of this section. The Einstein±de Sitter universes,

SCDM and TCDM, show the most rapid growth of the shear

components at late times, reflecting the rapid growth of structure;

the OCDM and LCDM results would seem to indicate only a

limited effect from the cosmological constant.

Since the real physical dimensions of the simulation time-slices

evolve with time, it is necessary to introduce factors of �1� z�3 to

the computed values to determine the real shear matrix. Doing this

appears to dilute considerably the effect of structure on the form

of the curves, as the example of Fig. 9 for the TCDM cosmology

shows. (The curves are similar in form for all the cosmologies.)

The interpretation of this dilution is that, even though structure is

forming (to produce greater shear values locally), the real

expansion of the universe (causing the mean particle separation

to increase) reduces the shear values in most locations, and

therefore just outweighs the increases from the formation of

Figure 4. Curves characterizing the time-slices in the SCDM cosmology,

derived directly from the computed values, and before applying any of the

conversion factors. The ordinate is in arbitrary units. Middle curve: the rms

value in each time-slice of the sum of the first two diagonal elements of the

shear matrix. Top curve: the mean of the high values of these elements.

Bottom curve: the mean of the high values for one of the off-diagonal

elements.

Figure 5. Curves, as for Fig. 4, characterizing the time-slices in the TCDM

cosmology.

Figure 6. Curves, as for Fig. 4, characterizing the time-slices in the OCDM

cosmology.

Figure 7. Curves, as for Fig. 4, characterizing the time-slices in the LCDM

cosmology.
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structure. In this way, the magnitudes of the shear component

values are seen to reduce slowly with time.

To obtain the two-dimensional effective lensing potentials (to

which the multiple lens-plane theory may be applied) it is

necessary to integrate the three-dimensional values, correctly

converted to physical units, along the line of sight, and to apply

the appropriate angular diameter distance factors in accordance

with equation (23). This requires the integrated three-dimensional

computed values (before any of the above factors are applied) to

be multiplied by the factor B�1� z�2rdrds=rs; where B �
�c=H0��2=c2�GMpart � �comoving box depth�22; as described in

Section 3.4. When the computed values are multiplied by the full

conversion factors in this way, we see in Fig. 10 (for the SCDM

cosmology, and a source redshift of 3.9) that the peaks are

extremely broad, indicating that significant contributions to the

magnifications and ellipticities can arise in time-slices covering a

wide range of redshifts, and not just near z � 0:5; where the

angular diameter distance multiplying factor, R, has its peak (for

sources at zs � 4�: (In this exercise, we have used �a � 1 for the

angular diameter distances. This is explained more fully in the

next section.)

The comparisons amongst the cosmologies are interesting.

Fig. 11 shows the integrated rms values (as above) multiplied by

the full conversion factors and the angular diameter distance

factors for the four cosmologies, assuming a source redshift of 4.

(We have smoothed the curves to emphasize more clearly the

widths of the curves and the positions of the peaks, which are

quantified in the figure caption; the actual source redshifts differ

very slightly in the different cosmologies.) We see that the LCDM

cosmology has a very broad peak at the highest values, suggesting

that lenses throughout a broad redshift range are able to contribute

significantly to magnifications and two-dimensional shearing of

images in this cosmology. Because of this, the magnitudes of the

magnifications are likely to be greatest in the LCDM cosmology.

Significantly, the much higher values for the angular diameter

Figure 8. Curves characterizing the time-slices in all the cosmologies,

derived directly from the computed values, and before applying any of the

conversion factors. The ordinate is in arbitrary units. The curves derive

from the rms values in each time-slice of the sum of the first two diagonal

elements of the shear matrix.

Figure 9. Curves characterizing the time-slices in the TCDM cosmology,

obtained by multiplying the computed values by �1� z�3 in each time-

slice. Middle curve: the rms value in each time-slice of the sum of the first

two diagonal elements of the shear matrix. Top curve: the mean of the high

values of these elements. Bottom curve: the mean of the high values for

one of the off-diagonal elements.

Figure 10. The two-dimensional components in each time-slice in the

SCDM cosmology (obtained by integration of the three-dimensional

values), converted to absolute values, including the angular diameter

distance factors, for sources at zs � 3:9: Middle curve: the rms value in

each time-slice of the sum of the diagonal elements of the Jacobian matrix.

Top curve: the mean of the high values of the summed diagonal elements.

Bottom curve: the mean of the high values for one of the off-diagonal

elements of the Jacobian.

Figure 11. Smoothed rms values of the sum of the diagonal elements of

the Jacobian matrix in each time-slice (obtained by integration of the three-

dimensional values), converted to absolute values including the angular

diameter distance factors, for sources at zs � 4: Results are shown for the

SCDM, TCDM, OCDM, and LCDM cosmologies. (The peaks of the

curves occur at redshifts of 0.63, 0.60, 0.86 and 0.87 respectively.)
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distance factor, R, in the LCDM cosmology appear to be the more

important factor, rather than the existence of structure. The

OCDM cosmology also has a very broad peak. The TCDM

cosmology has both the narrowest range and the lowest peak. The

differences between the SCDM and TCDM cosmologies probably

reflect the differences in structure on different scales in the two

cosmologies, since R is the same for both. In general, however, we

can say that, for all these cosmologies, significant contributions to

the magnification and shear may arise from lenses at a very wide

range of redshifts.

In a similar study, Premadi et al. (1998a) find that the individual

contribution due to each of their lens-planes is greatest at inter-

mediate redshifts, of order z � 1±2; for sources located at zs � 5;
and Premadi, Martel & Matzner (1998b, 1999) also find very

broad peaks covering a wide range of intermediate lens-plane

redshifts for sources at zs � 3:

5.2 Results in the different cosmologies

In Section 5.1 we assumed a value of �a � 1 in the determination

of the angular diameter distances in the various cosmologies.

From the output of the shear algorithm one is able to obtain an

estimate of the clumpiness or smoothness in each time-slice.

Having set the minimum softening scale, the code declares the

number of particles which are assigned the minimum softening,

and one can therefore immediately obtain the mass fraction

contained in clumps, which we choose to be defined by the

minimum softening scale.

For the SCDM cosmology, there is a mass fraction of 0.026

in clumps in the earliest time-slice at z � 3:6 (next to z � 3:9�
giving �a�z � 3:6� � 0:97; and at z � 0 the fraction is 0.17, giving

�a�z � 0� � 0:83: It is clear that the mean value throughout the

redshift range is close to 1, and almost equivalent to the `filled-

beam' approximation. (This result is in agreement with Tomita

1998c, who finds aÅ to be close to 1 in all cases.) The multiplying

factors, rdrds=rs; are very close for the values �a � 0:83 and 1.0,

although somewhat different from the values for �a � 0 appro-

priate for an entirely clumpy universe. The fractional discrepancy

between �a � 0:83 and �a � 1:0 at the peak of the curves for the

SCDM and TCDM cosmologies is 5.2 per cent for a source at

zs � 4; 2.4 per cent for zs � 2; and for sources nearer than zs=1 the

discrepancy is well below 1 per cent.

In the TCDM cosmology with shape parameter 0.25, aÅ falls to

0.88 at z � 0: The higher value in the TCDM model confirms that

the SCDM cosmology (with shape parameter 0.5) has more

clumpiness at late times, allowing higher values of magnification

and shear to occur. The other cosmologies also have high (though

somewhat similar) values for the smoothness parameter at z � 0:
The values are 0.80 in the OCDM cosmology, and 0.82 in the

LCDM cosmology. Table 2 contains the values of �a�z � 0�; which

therefore represent the minimum values for aÅ , and also the ratios

R� �a � 1�=R� �a�z � 0�� at the peaks of the curves for the different

cosmologies. These have all been evaluated for a source redshift

of 3.6 to enable direct comparisons to be made.

It has been shown by Barber, Thomas & Couchman (1999) that

the weak lensing statistics show only a small sensitivity to the

smoothness parameter, aÅ , for values between 0.83 and 1 in

the SCDM cosmology. Furthermore, the minimum values in all

the cosmologies were always at least 0.8 throughout the redshift

range, so that the real values are likely to be closer to unity in

every case. We have therefore chosen to present our results on the

basis of �a � 1 throughout for all the cosmologies. This conclusion

is validated qualitatively, since the variable softening scheme used

in the algorithm ensures that almost all rays pass entirely through

softened mass.

The source redshifts, zs, we have chosen throughout this work

are close to 4, 3, 2, 1 and 0.5, and we shall refer to the sources in

these terms. The actual redshift values vary slightly for the

different cosmologies and appear in Table 4.

We show in Fig. 12 an example of the distributions of the

magnifications, m , in the LCDM cosmology for four different

source redshifts. For all the source redshifts and all the

cosmologies, there is a significant range of magnification as

indicated in Table 4. From these distributions we have computed

the values at the peaks, mpeak. Then, since the distributions are

Table 4. Various magnification statistics for the
different cosmologies, as described in the text
(Section 5.2). The interval from m low to mhigh

contains 95 per cent of all the values.

zs m low mpeak rms deviation mhigh

SCDM

3.9 0.835 0.933 0.115 1.420
3.0 0.852 0.949 0.101 1.367
1.9 0.885 0.947 0.079 1.277
1.0 0.930 0.973 0.049 1.181
0.5 0.969 0.985 0.023 1.089

TCDM

3.9 0.861 0.959 0.091 1.315
3.0 0.877 0.951 0.081 1.286
1.9 0.904 0.966 0.064 1.228
1.0 0.941 0.972 0.039 1.144
0.5 0.974 0.986 0.019 1.067

OCDM

4.0 0.858 0.919 0.115 1.469
2.9 0.885 0.939 0.093 1.388
2.0 0.915 0.942 0.069 1.283
1.0 0.960 0.972 0.033 1.147
0.5 0.985 0.989 0.013 1.062

LCDM

3.6 0.789 0.885 0.191 1.850
2.0 0.870 0.934 0.108 1.453
1.0 0.944 0.966 0.045 1.191
0.5 0.981 0.987 0.016 1.070

Figure 12. Probability distributions for the magnification, for zs � 3:6;

2.0, 1.0 and 0.5 in the LCDM cosmology.
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asymmetrical, we have calculated the values, m low and mhigh,

above and below which 97.5 per cent of all lines of sight fall, and

also the rms deviations from unity for the magnifications. (These

latter rms values have been computed only for the lines of sight

displaying magnifications between m low and mhigh because three

high-magnification events in the LCDM cosmology would distort

the rms values considerably.) All the values mentioned are

displayed in Table 4.

It is interesting to compare the distributions in the different

cosmologies. Figs 13 and 14 show the magnification distributions

for all the cosmologies for source redshifts of 1 and 4 respectively.

The distributions for the magnifications (and also the conver-

gence, shear and ellipticities) are all broader in the SCDM

cosmology when compared with the TCDM cosmology, due to its

more clumpy character. For source redshifts of 4 the OCDM and

SCDM cosmologies have very similar distributions, even though

the angular diameter distance multiplying factors are larger in the

OCDM cosmology. For high source redshifts the magnification

distributions are broadest in the LCDM cosmology (and the

maximum values of the magnification are greatest here), but for

lower source redshifts the width of the distribution is below the

SCDM and OCDM cosmologies.

We plot in Figs 15 and 16 the probabilities for which the

magnifications are greater than the abscissa values (the integrated

probabilities). This is done for all the cosmologies for source

redshifts of 1 and 4 respectively, and clearly shows the distinctions

at the high-magnification end. In particular, the LCDM cosmology

exhibits a very broad tail for zs � 4; and for this reason we show

the integrated magnification probability for this cosmology in

Fig. 17 for source redshifts of 3.6, 2.0, 1.0 and 0.5.

In Fig. 18 we show the magnification, m , plotted against the

convergence, k , for zs � 4; again for the LCDM cosmology.

Departures from the curve represented by the values of 1=�1 2 k�2
clearly arise as a result of the presence of the term 2g2 in the

denominator of equation (28), and are most pronounced at the

high-k end, as might be expected. This is true for all the source

redshifts and all the cosmologies.

We would generally expect the shear, g , to fluctuate strongly

for light rays passing through regions of high density (high

convergence), and we indeed find considerable scatter in the

shear when plotted against the convergence. This would result in

different magnification values along lines of sight for which the

convergence values are the same. Fig. 19 (reproduced from

Barber et al. 1999) shows the result of binning the convergence

values in the SCDM cosmology and calculating the average

shear in each bin, for sources at zs � 4: We see that throughout

most of the range in k the average shear increases very slowly,

and closely linearly, and we have found similar trends in the

other cosmologies. (At the high k-end there are too few data

points to establish accurate average values for g.) This result

suggests that there may be a trend towards higher mean

magnification values (as k increases) than would be the case if

kgl were constant.

Figs 20 and 21 show the distributions in the convergence, k ,

Figure 13. The magnification probability distributions for all the

cosmologies, assuming zs � 1:

Figure 14. The magnification probability distributions for all the

cosmologies, assuming zs � 4:

Figure 15. The probability for which the magnification is greater than the

abscissa value. The plot shows the data for all the cosmologies for zs � 1:

Figure 16. The probability for which the magnification is greater than the

abscissa value. The plot shows the data for all the cosmologies for zs � 4:
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primarily responsible for the magnifications for all the cosmol-

ogies, for zs � 1 and zs � 4 respectively.

Table 5 shows the rms values for k in the different cosmologies

for all the source redshifts, and compares them with the rms values

for the magnifications. (This time, unlike Table 4, the rms values

have been computed from all lines of sight, rather than just those

with magnifications between m low and mhigh. We have not

included the values for source redshifts of zs � 3:6 in the

LCDM cosmology where some strong lensing events were

evident, including two events with negative magnifications

indicative of the production of multiple images.)

The distributions in the shear, g (defined according to equation

26) are broadest, as expected, for the highest source redshifts, and,

as before, the LCDM cosmology displays the broadest distribution

for g for sources at high redshift.

The ellipticity, e , in the image of a source is primarily produced

by the shear, and we show in Fig. 22 the probability distributions

for e for zs � 1 for all the cosmologies. Fig. 23 shows the inte-

grated probability for which the ellipticity is greater than the

abscissa value, again for zs � 1 and for all the cosmologies.

Figs 24 and 25 show the same information for zs � 4: From the

integrated distributions, 90 per cent of all lines of sight have

ellipticities greater than 0.016 (SCDM), 0.013 (TCDM), 0.009

(OCDM) and 0.015 (LCDM) for sources at zs � 1: The corre-

sponding figures for zs � 4 are 0.034 (SCDM), 0.027 (TCDM),

0.033 (OCDM) and 0.057 (LCDM). Although the distributions in

Figs 22 and 24 are a little noisy, the peaks in the distributions are

seen to occur around e � 0:034 (SCDM), 0.027 (TCDM), 0.021

(OCDM) and 0.033 (LCDM) for zs � 1; and around e � 0:075

(SCDM), 0.057 (TCDM), 0.081 (OCDM) and 0.111 (LCDM) for

zs � 4: Once again, we see that the LCDM cosmology produces

the greatest variation and the highest peak values at high redshift,

although this is not the case for sources at lower redshifts.

Figure 17. The probability for which the magnification is greater than the

abscissa value. The plot shows the data for the LCDM cosmology for four

different source redshifts as indicated.

Figure 18. LCDM cosmology: m versus k for zs � 4 (crosses). The

continuous line, shown for comparison, represents m � 1=�1 2 k�2:

Figure 20. The probability distributions for the convergence in the

different cosmologies, assuming zs � 1:

Figure 21. The probability distributions for the convergence in the

different cosmologies, assuming zs � 4:

Figure 19. SCDM cosmology: Shear versus convergence for sources at

zs � 4 (dots), and the average shear (full line) in each of the k bins. The

plot shows a slow and nearly linear increase with increasing convergence,

as indicated by the (dashed) straight line. (The plot has been reproduced

from Barber et al. 1999.)
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The ellipticity is very closely linear in terms of g throughout

most of the range in g , for all the cosmologies. Some scatter

occurs because of the factor containing the convergence, k , in

equation (30).

Finally, the distance±redshift relation, equation (33), implies

that there may be an effect on the angular diameter distances from

the shear. Barber et al. (1999) investigated this for the SCDM

cosmology, and found that whilst the maximum effects of shear on

the mean magnification values may be at least 10 per cent, only

3.2 per cent of the lines of sight were affected in this way. Also,

they pointed out that the shear has an effect in the distance±

redshift relation equivalent to increasing the effective smoothness

parameter, aÅ , and this is true for all the cosmologies. By

substituting the mean shear value (from the SCDM cosmology)

determined for sources at zs � 0:5 (where the term in s in

equation 33 is largest), they found the effect on aÅ (and therefore

on the angular diameter distances) to be completely negligible.

Furthermore, the importance of the effect reduces with redshift, so

that our decision to ignore the effects of shear in the distance±

redshift relation is justified.

6 D E T E R M I N AT I O N O F T H E

C O S M O L O G I C A L PA R A M E T E R S

6.1 Weak shear statistics and the density parameter

Jain & Seljak (1997) have given careful consideration to the

interpretation of observed shear data (from measured galaxy

ellipticities) by comparing with the analytical results of second-

order perturbation theory. They claim that non-linear evolution

leads to non-Gaussian effects in the weak lensing statistics which

are more easily detected in second-order, and higher order,

moments. In particular, the probability distribution for the three-

dimensional density contrast,

d�r� � r�r�
�r

2 1; �45�

is almost indistinguishable in the different cosmologies, whereas

the probability distribution function for the convergence, k , shows

different peak amplitudes and different dispersions in the different

cosmologies. This is because the transition to non-linearity in the

evolution of structure depends primarily on the density contrast

Figure 22. The probability distributions for the ellipticity for all the

cosmologies, for zs � 1:

Figure 23. The probability for which the ellipticity is greater than the

abscissa value. The plot shows the data for all the cosmologies for zs � 1:

Figure 24. The probability distributions for the ellipticity for all the

cosmologies, for zs � 4:

Table 5. The rms deviations in the
magnification and convergence for the
different cosmologies.

zs Magnification Convergence
rms deviation rms deviation

SCDM

3.9 0.171 0.064
3.0 0.149 0.058
1.9 0.115 0.047
1.0 0.073 0.031
0.5 0.037 0.016

TCDM

3.9 0.126 0.052
3.0 0.111 0.047
1.9 0.088 0.038
1.0 0.056 0.025
0.5 0.027 0.013

OCDM

4.0 0.245 0.066
2.9 0.176 0.056
2.0 0.123 0.044
1.0 0.060 0.024
0.5 0.026 0.012

LCDM

3.6 N/A N/A
2.0 0.314 0.064
1.0 0.120 0.032
0.5 0.030 0.013
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alone, but the weak lensing signal is strongest in those

cosmologies which have developed structure at optimum redshifts

for given source positions, and therefore depends more directly on

the rate of evolution. Specifically, the non-linear evolution of the

power spectrum introduces non-Gaussianity to the weak lensing

statistics, whilst the matter density parameter, V0, (and to some

degree the vacuum energy density parameter, l0) determines the

dispersion in the statistics.

Jain & Seljak (1997) have computed the expected skewness, S,

in the convergence,

S � 1

s3
k�k 2 �k�3l; �46�

where s represents the standard deviation in the distribution for k.

As expected, the skewness was greatest on small angular scales,

and largest for sources at the lowest redshifts. In general, the

LCDM cosmology produced the greatest skewness, followed by

the OCDM, and finally the SCDM cosmologies, for sources at low

redshift. Even though they have assumed an empty beam scenario

with �a � 0; and correspondingly different angular diameter

distances from our work, our own results for the skewness in k
are quite consistent with theirs. We have computed the skewness,

not on different angular scales, but as a function of redshift for the

different cosmologies. It is not possible to state a specific angular

scale for our data, because of the variable softening approach in

the shear algorithm. Fig. 26 confirms that, at redshifts less than

about 1.5, the LCDM cosmology gives rise to the largest

skewness, followed by the OCDM cosmology, and finally, the

SCDM and TCDM cosmologies. The difference between the

SCDM and TCDM cosmologies does suggest different forms of

structure, which result directly from the input shape parameter, G,

in the power spectrum. In broad terms, it is clear that the skewness

decreases with source redshift, and decreases with the density

parameter, precisely as expected from perturbation theory.

Bernardeau, van Waerbeke & Mellier (1997) also use

perturbation theory (and the empty-beam approach) to assess

how the low-order moments in the convergence may depend on

the cosmological parameters. A number of results are predicted.

They define the moment, S3 (not the skewness, defined above), by

S3 � kk3l
kk2l2

; �47�

and predict that S3 / V20:8
0 for zs , 1; or S3 / V21:0

0 for zs ! 1;
and they predict a slightly weaker dependence on V0 for zs . 1:
We do not find these exact relationships because working in the

full-beam approximation with variable smoothing alters the

predictions. However, we do find that the value of this statistic

does decrease with increasing V0. Our results for S3 are displayed

in Fig. 27. Bernardeau et al. predict significantly less dependence

on l0.

Jain et al. (2000) have used ray-tracing in N-body simulations,

as described in the introduction, in an attempt to evaluate the

density parameter from weak lensing statistics. Since they make

use of the empty-beam approximation, they describe the possi-

bility of many more lines of sight passing through voids from

zs � 1 in open universes, because of the earlier beginning to

structure formation. They suggest that this means that the prob-

ability distribution for k in open universes will have its peak close

to the minimum value. Higher density universes will have the peak

well away from the minimum, so that the shape of the distribution

will be less steep. Moreover, they state that this situation only

applies on small scales, and on such scales this points to the

minimum value of k being roughly proportional to V0. A better

statistic in the empty-beam approximation would be that �kkl 2
kmin� / V0: However, they admit that the result `does depend

somewhat on the geometry, as the pathlength and angular scale

differ between open and cosmological constant models with the

same V0.' More specifically, this result will depend crucially on

the approximation used, i.e., the empty- or full-beam approxima-

tion, and the procedure for particle smoothing. They find that the

Figure 26. The skewness in k , according to equation (46), as a function of

redshift for the different cosmologies, indicating broadly that the skewness

decreases with the density parameter, V0.

Figure 27. The statistic S3(k ), defined by equation (47), as a function of

redshift for the different cosmologies. It is clear that the low-density

cosmologies have higher values of S3 at low redshifts.

Figure 25. The probability for which the ellipticity is greater than the

abscissa value. The plot shows the data for all the cosmologies for zs � 4:
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measured minimum for k in the open cosmology is close to

the predicted value, but that in the critical, V0 � 1; cosmology the

value was far from the empty-beam value because there were

actually no completely empty lines of sight. Our full-beam

approach will, of course, represent the extreme case. It is therefore

reassuring to see that both our kmin (Fig. 28) and �kkl 2 kmin�
(Fig. 29) values for the different cosmologies are of the order

expected from the values of V0. However, because of the entirely

different approach from that of Jain et al. (2000), our results are

not able to indicate specific values for V0.

Jain et al. (2000) also find for the S3 statistic that S3�OCDM� .
S3�LCDM� . S3�TCDM� . S3�SCDM� at low redshift. This

concurs with our findings (see Fig. 27). They quantify the

difference between the SCDM and TCDM cosmologies in terms

of a weak function of the shape parameter, which occurs in the

expression for S3 from perturbation theory.

They have also explained in some detail how observational data

may be used to reconstruct the convergence, which is only feasible

with large fields where the weak shear signal is measurable.

However, in view of our quite different approaches, which clearly

give rise to discrepancies (although only in terms of degree), care

must be taken when interpreting observational data in this way. If

we had a better understanding of the form, distribution and

evolution of the dark and luminous matter in the Universe, it might

be possible to produce simulations and weak lensing experiments

in more realistic scenarios.

White & Hu (2000) have undertaken similar work in an LCDM

cosmological model with s8� 1.2 and using both 1283 and 2563

particles with a PM code. Their algorithm computes weak lensing

statistics, from which they find that the non-Gaussianity of the

distributions substantially increases the sampling errors for the

skewness and kurtosis of the convergence in the several to tens of

arcminutes regime. These sampling errors are, of course, crucial

when interpreting observations in terms of cosmological models.

6.2 Weak lensing of high-redshift type Ia supernovae

We have seen in Section 5 the significant ranges in magnifications

(dependent on the cosmology) which might apply to distant

sources. In the absence of magnification (or demagnification)

from the large-scale structure, it would be possible to determine

the cosmological parameters, V0 and l0, from the departures from

linearity in the Hubble diagram, provided `standard candle'

sources together with good calibration were available for

measurement at high redshift. This is precisely the route taken

by a number of authors, most importantly Riess et al. (1998) and

Perlmutter et al. (1999), both of whom have used high-redshift

type Ia supernovae data of redshifts up to 0.97. It is evident from

our results that full account must be taken of the ranges in

magnification for each of the cosmologies, and in particular the

cosmologies suggested by the high-redshift type Ia supernovae

results.

Both groups of workers, i.e., Riess et al. (1998) and Perlmutter

et al. (1999), point to cosmologies which are close to the

V0 � 0:3, l0 � 0:7 cosmological simulation we have analysed in

terms of weak lensing. Consequently, our results from this

cosmology are of considerable interest for their impact on the

determination of the cosmological parameters. Using the data we

report here, Barber (2000) finds that true underlying cosmologies

having a deceleration parameter q0 � 20:51� 0:03=2 0:24 may

be interpreted as having q0 � 20:55; from the use of perfect

standard candles (without intrinsic dispersion), arising purely from

the effects of weak lensing. This significant dispersion in q0

(approximately 2s ) is somewhat larger than that found by

Wambsganss et al. (1997) based on a cosmology with

VM � 0:4, VL � 0:6; because of our broader magnification

distribution at z � 1:

7 S U M M A RY O F R E S U LT S

In the application of the code for the three-dimensional shear, we

have had to consider what appropriate angular diameter distance

values should be applied to the data. The values have all been

calculated numerically from the generalized beam equations (see

Section 4) for the different cosmologies. This was done in each

case for a smoothness parameter �a � 1: Our variable softening

scheme for the particles ensures that nearly all rays pass entirely

through softened mass and, in addition, we found that the mini-

mum value of aÅ was at least 0.8 (at z � 0� in all the cosmologies.

The differences in the magnification distributions for �a � 1 and

for the minimum value were almost indistinguishable. The effects

of shear on the angular diameter distances (through changes to the

effective value of the smoothness parameter, aÅ ), were found to be

completely negligible at all redshifts, so we are justified in

ignoring them in the distance±redshift relation. Furthermore, they

are always additive, making the effective value of aÅ even closer to

unity.

Figure 28. kmin versus redshift for the different cosmologies at low

redshift, showing the order expected from the values of V0.

Figure 29. �kkl 2 kmin� versus redshift for the different cosmologies at low

redshift, showing the order expected from the values of V0.
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We found, in Section 5.1, that the Einstein±de Sitter universes

showed the most rapid growth in the `intrinsic' shear components

at late times, as expected from the growth of structure in these

cosmologies. This was as a result of studying the computed shear

values before the application of the angular diameter distance

factors, and before conversion to physical units. The OCDM and

LCDM cosmologies indicated only a limited contribution from the

cosmological constant in terms of the growth in the shear values,

again consistent with the expected evolution of structure in these

cosmologies.

When the computed shear values were multiplied by the full

conversion factors appropriate to the integration, together with the

angular diameter distance factors, the resulting curves exhibited

very broad peaks, indicating that significant lensing may result

from structure in a wide band of redshifts. Significantly, the

LCDM cosmology has both the broadest and the highest peak,

indicating that this cosmology should produce, for example, the

broadest range of magnifications. This result would appear to

come primarily from the large values of the angular diameter

distance factors for this cosmology, rather than any considerations

about the evolution of structure. However, the broader and higher

peak for the SCDM cosmology, compared with the TCDM

cosmology, does indicate the differences in structure within them,

since they both have the same values for the angular diameter

multiplying factor, R.

In Section 5.2 we showed the results for the magnification

distributions for the different cosmologies for different source

redshifts, and these are concisely summarized in Table 4. At high

redshift, the LCDM cosmology produces the highest magnifica-

tions, the broadest distribution curves, and the lowest peak values.

For sources at zs � 3:6 in the LCDM cosmology, 2.5 per cent of

all lines of sight have magnification values greater than 1.850.

(The maximum magnifications, not quoted here, depend on the

choice of the minimum softening in the code, although the overall

distributions are very insensitive to the softening.) The rms

fluctuations in the magnification (about the mean) were as much

as 0.191 in this cosmology, for sources at zs � 3:6: Even for

sources at zs � 0:5 there is a measurable range of magnifications

in all the cosmologies.

The immediate implication of these results is the likely

existence of a bias in observed magnitudes of distant objects,

and a likely dispersion for standard candles (for example, type Ia

supernovae) at high redshift.

The magnification versus the convergence showed the presence

of significant shear, and the mean values of g in small

convergence bins pointed to a possible slow linear increase in

kgl with k . This would result in a trend towards higher mean

magnification values (as k increases) than would be the case for

constant kg l.
The distributions for the shear, g , are broadest, in the LCDM

cosmology for high source redshifts, and there are closely linear

relationships between the ellipticity and the shear in all the

cosmologies. This relationship leads again to broad distributions

in the ellipticity for high-redshift sources in the LCDM

cosmology. The peak in the ellipticity distribution for the

LCDM cosmology, for zs � 3:6; is 0.111, being almost twice

the value in the TCDM cosmology.

Jain et al. (2000) have expressed the possibility of determining

the value of the density parameter from the convergence field from

weak lensing statistics. They show one-point distribution func-

tions for k, assuming sources at zs � 1; for all their four cos-

mologies and using different (fixed) smoothing scales in each.

They describe the increasing non-Gaussianity of the distribution

functions as the smoothing scale is reduced, and the increasing tail

at high k . They also describe the shape of the distribution

functions for negative k , which results from the rate of structure

formation in the different cosmologies, and claim the interesting

conclusion that the minimum value of k is proportional to the

density parameter. We were able to establish from our own work

that, in broad terms, the skewness in k decreases with source

redshift, and decreases with increasing density parameter, as

expected. Also, the statistic S3 (defined in equation 47) was found

to decrease with increasing V0. However, we were unable to

establish more precise relationships, because of the use of the

full-beam approximation. The order of the cosmologies for S3 is

the same as that presented by Jain et al. (2000). We also found

that both kmin and �kkl 2 kmin� are of the correct order for

the different cosmologies in terms of V0, although, again for the

same reason, it would not be possible to obtain specific values

for V0.

8 C O M PA R I S O N S W I T H OT H E R W O R K A N D

C O N C L U S I O N S

We now, very briefly, make some comparisons with the weak

lensing results obtained by other authors. This will not be

exhaustive, because it has been anticipated that our results should

be different, for a number of reasons. Primary amongst these are

the following. First, our results were obtained using the three-

dimensional shear code, which allows periodicity, the use of the

peculiar potential, the net zero mean density requirement, and

angular diameter distances to every evaluation position within

each simulation volume. Second, many two-dimensional (planar)

approaches may suffer from inadequate convergence to the true

limiting values for the shear matrix and angular deflections. Third,

we have introduced a physically realistic variable softening to the

method, which requires use of the full-beam approximation for the

angular diameter distances, rather than the empty-cone approxi-

mation used by many authors with either point masses, small

(fixed) softenings, or small pixellation in the planes.

The magnification distributions of JaroszynÂski et al. (1990) for

the SCDM cosmology do not have mean values of 1, and their

dispersions in the convergence for sources at zs � 1 and zs � 3 are

considerably lower than our values, with very little evolution with

redshift. In our work, the peaks of the ellipticity distributions

occurred at values of 0.075 (similar to the value for zs � 4� and

0.034 for sources at zs � 3 and 1 respectively, and these are

somewhat lower than the values of 0.095 �zs � 3� and 0.045

(zs � 1� found by JaroszynÂski et al. Rather surprisingly, however,

their peak values in the distributions for the shear are quite similar

to ours, especially for sources at zs � 3:
Wambsganss et al. (1998) find magnifications up to 100 in the

SCDM cosmology, and correspondingly highly dispersed dis-

tributions, very much larger than ours for zs � 3: The high-

magnification tail in the distributions almost certainly derives

from the low value of the (fixed) softening scale resulting from the

`smearing' of the mass distribution in the 10 h21 kpc � 10 h21

kpc pixels.

Similarly, Marri & Ferrara (1998) show wide magnification

distributions, and very high maximum values, which again occur

as a result of using point particles rather than smoothed particles.

Their procedure (summarized in Section 1.2) is completely

different from ours, and, unlike us, they find that the SCDM
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cosmology has the broadest magnification probability distribution,

followed by the LCDM cosmology, and finally their HCDM

cosmology. In particular, we would disagree with their choice of

�a � 0; which is representative of an entirely clumpy universe, as

opposed to our finding that the SCDM universe is close to being

smooth at all epochs.

Hamana et al. (2000) find that the dispersions in the probability

distributions for k, g and m are all greatest for the Einstein±

de Sitter cosmology, and are very similar for their open and

cosmological constant cosmologies. This is in contrast to our

findings. In addition, their magnification and convergence

distributions for zs � 1; 2 and 3 are much broader than ours.

These differences arise most likely because of the different

normalizations, s8, in their simulations. Surprisingly, however, the

widths of the distributions for g in the SCDM cosmology are

similar to ours.

The ranges in magnification from Premadi et al. (1998a) appear

to be rather similar to ours for sources at zs � 3 for their three

cosmologies, and the widths of the distributions are of the same

order for the different cosmologies that we find. This is reassuring

because, although their method relies on two-dimensional

projections of the simulation boxes, they include many of the

essential features to which we have drawn attention, for example,

an assumed periodicity in the matter distribution, randomly

chosen initial conditions to avoid structure correlations between

adjacent simulation boxes, the net zero mean density requirement,

realistic mass profiles for the particles, and use of the filled-beam

approximation with a smoothness parameter, �a � 1: They show

the average shear for a source at zs � 5 contributed by each of the

lens-planes individually, and find that the largest contributions

come from those planes at intermediate redshift, of order z � 1±2:
Similarly, they find that the lens-planes which contribute most to

the average magnifications are also located at intermediate

redshifts. In terms of the development of structure in the different

cosmologies, they find that the lens-planes contributing the most

shear and magnification are located at larger redshifts for those

cosmologies with smaller VM. The average shear for each redshift

has been plotted by the authors. They find that the average shear

contributed by each lens-plane is many times greater in their

Einstein±de Sitter cosmology than in their cosmological constant

model for all redshifts, and this in turn is greater than in their open

cosmology. This is because the total mass is 5 times greater in

their Einstein±de Sitter cosmology, whilst the mass in galaxies is

similar for all the cosmologies. However, when the cumulative

shear is computed, taking account also of the number of lens-

planes in each cosmology, they find that the magnitudes of the

shear in the cosmological constant model are significantly larger

than the values in the other two cosmologies for sources at zs � 5:
We also find this at the higher redshifts.

Fluke et al. (2000), in applying the ray bundle method of Fluke

et al. (1999), explain clearly the differences between the empty-

cone and full-beam approximations. They use the empty-cone

approximation, because of their use of an effective fixed physical

radius for each particle, equal to
���
2
p � the Einstein radius for each.

This gives rise to magnification probability distributions with

mmin � 1; arising from the use of �a � 0; and high-magnification

tails, arising from the small effective radii for particles and

clusters. They obtain the weak lensing statistics for the same

cosmologies we have used. For zs � 1; the distribution in the

magnifications for the SCDM cosmology is clearly broader than

that for the LCDM cosmology, which in turn is broader than the

OCDM cosmology. This is also true of our data, although the

order for the cosmologies, in our work, is completely altered for

higher source redshifts. The authors find, as do we, that the most

significant differences amongst the cosmologies arise directly as a

result of the optical depth to the source, which is related to the

angular diameter distances. Moreover, there is a suggestion in

their results (Fluke, private communication) that Kolmogorov±

Smirnov tests may be unable to distinguish the cosmologies, even

random distributions of particles, in terms of their magnification

distributions, if the same set of angular diameter distance factors is

applied to each.

This last statement may prove to be extremely important, as it

appears from both our own work and that of Fluke et al. (2000)

that the angular diameter distances (or optical depths) are really

the determining factor for weak lensing statistics. Moreover, our

two approaches may represent `limits' for the true lensing

behaviour from the mass distribution in the Universe. The variable

softening facility within our algorithm leads naturally to the

assumption that the Universe may be described in terms of the

full-beam approximation. This is, however, quite different from

the assumptions of many other workers, who frequently use point

particles, or a limited form of fixed softening, or small pixellation,

and therefore use the empty-beam approximation. The two

approaches give rise to quite different expectations and results.

The most obvious differences are the following. First, strong

lensing can occur with effectively small particles, leading to high-

magnification tails in the probability distributions. Second,

magnification distributions in the empty-cone approximation all

have mmin � 1; whilst in the full-beam approximation, mmin # 1;

this may alter the dispersions in the two distributions. Third, the

mean values for the magnifications can be calculated from the

respective angular diameter distances in the different cosmologies

for the empty-beam approximation; however, the mean values in

the full-beam approximation are always 1. These points make

comparisons between methods using the different approximations

difficult. However, it is probable that the Universe is neither

completely smooth nor filled with galactic-mass point-like

objects. (Subramanian, Cen & Ostriker 2000 highlight our

uncertainty in this area, by suggesting that small dense masses

formed early during hierarchical clustering may persist to late

times, so that real cluster halo structures may depend crucially on

the detailed dynamics of the dense pockets.) The resolution of this

question, together with a better understanding of the form,

distribution and evolution of the dark and luminous matter content

of the Universe, should provide a much clearer indication of the

likely weak lensing statistics in cosmological N-body simulations

of the future.
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A P P E N D I X A : G E N E R A L I Z AT I O N O F T H E

DY E R ± R O E D E R E Q UAT I O N

In Section 4 we presented the most simple form for the Dyer±

Roeder equation (equation 34), which can be solved analytically

for V0 � 1; l0 � 0; and arbitrary aÅ. The general solution for the

angular diameter distance between redshifts of z1 and z2, in such a

cosmology, is well documented (see, e.g., Schneider et al. 1992)

and from this solution the multiplying factors DdDds=Ds are easily

obtained. However, this solution applies only to cosmologies with

zero cosmological constant. We therefore generalized the form of

the Dyer±Roeder equation to apply to the cosmologies being

studied in this work. The following summary of this work is likely

to be helpful to others working in this field.

We started from the generalized beam equation, quoted by

Linder (1998a,b):

d2D

dz2
� �3� q�z���1� z�21 dD

dz

� 3
2
�1� z�22D

X
s

�1� s� �a s�z�Vs�z� � 0: �A1�

In this equation,

q�z� �
1
2

P
sVs�0��1� 3s��1� z�1�3sP

sVs�0��1� z�1�3s 2
P

sVs�0�2 1
� � �A2�

is the deceleration parameter at redshift z, each value of s denotes

a content component of the universe (for example, non-relativistic

matter, radiation, vacuum energy, etc.), and aÅ s and Vs(z) represent

the smoothness parameter and the density parameter respectively,

applicable to the component s, and redshift z. For two-component

cosmologies, to which we have restricted our work, s � 0 for dust

and s � 21 for the vacuum energy. When s � 0 only, equation

(A1) reduces to the Dyer±Roeder equation immediately. Also,

with two components only, the equation for the deceleration

parameter at the present day, reduces from equation (A2) to the

familiar form, q0 � 1
2
V�0�2 l�0�; where now we have used V

and l to represent the matter and vacuum energy density

parameters respectively. Also, the Hubble parameter is, in general,

H�z� � H0

X
s

Vs�0��1� z�3�1�s� 2
X

s

Vs�0�2 1

" #
�1� z�2

( )1=2

:

�A3�
For a two-component universe this becomes

H�z� � H0{V�0��1� z�3 � l�0�2 �V�0� � l�0�2 1��1� z�2}1=2:

�A4�
For two components only, the generalized beam equation

(equation A1) is

d2D

dz2
� �3� q�z���1� z�21 dD

dz
� 3

2
�1� z�22D �a�z�V�z� � 0;

�A5�
in which

q�z� �
1
2
�V�0��1� z�2 2l�0��1� z�22�

V�0�z� l�0��1� z�22 2 l�0� � 1
; �A6�

V�z� � V�0��1� z�3�H�z�=H0�22; �A7�
H�z�
H0

� {V�0��1� z�3 � l�0�2 �V�0� � l�0�2 1��1� z�2}1=2;

�A8�
and so

V�z� � V�0��1� z�3{V�0��1� z�3 � l�0�
2 �V�0� � l�0�2 1��1� z�2}21: �A9�

To solve equation (A5), boundary conditions

D�z1; z1� � 0; �A10�
and

dD�z1; z�
dz

����
z�z1

� �1� z1� H�z1�
H0

� �21

�A11�

are set, where the second condition is made by considering the

form of the Hubble law for a fictitious observer at the redshift

z1.

However, we need values for the angular diameter distances

between any arbitrary redshift values (not always based on z � 0�
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in order to construct values for DdDds=Ds at all the required

evaluation positions. To do this, equation (A5) has to be general-

ized further to apply to any arbitrary redshift, and we can do this

by changing the variable to

w ;
1� z

1� z1

2 1: �A12�

w then corresponds to the redshift of an object as if viewed by an

observer at the arbitrary redshift z1. Then, substituting the

expression for q(z) (equation A6), equation (A5) becomes, after

some manipulation,

d2D

dw2
�1� z1�2 � 3�

1
2
�V�0�x 2 2l�0�x22�

V�0��x 2 1� � l�0�x22 2 l�0� � 1

� �
� 1

x

dD

dw
�1� z1� � 3

2
D �a

� V�0�x
V�0�x3 � l�0�2 �V�0� � l�0�2 1�x2

� �
� 0; �A13�

with boundary conditions,

D�z1; z1� � 0; �A14�
and

dD�z1;w�
dw

����
w�z1

� �1� z1�21{V�0��1� z1�3 � l�0�

2 �V�0� � l�0�2 1��1� z1�2}21=2: �A15�
[In equation A13 we have written x ; �1� w�=�1� z1� for

clarity.]

We have solved this equation numerically for all the

cosmologies, checking carefully that the results are the same as

the analytical values for the Einstien-de Sitter model. To solve it,

we made further definitions to simplify the form of the equation.

First, for clarity, we directly interchanged w and z, and made the

following definitions.

a ; �1� z1�2; �A16�

b ; V�0�=�1� z1�; �A17�
c ; 2l�0��1� z1�2; �A18�
d ; 2V�0�=�1� z1�; �A19�
e ; 2 2 2V�0�2 2l�0�; �A20�
f ; 3

2
�aV�0�=�1� z1�; �A21�

g ; V�0�=�1� z1�3; �A22�
h ; l�0�; �A23�
i ; �V�0� � l�0�2 1�=�1� z1�2; �A24�
and

j ; �1� z1�21{V�0��1� z1�3 � l�0�
2 �V�0� � l�0�2 1��1� z1�2}21=2: �A25�

Then the general two-component equation to solve is

d2D

dz2
a � 3� b�1� z�2 c�1� z�22

d�1� z� � e� c�1� z�22

� �
a�1� z�21 dD

dz

� f �1� z�
g�1� z�3 � h 2 i�1� z�2 D � 0; �A26�

with boundary conditions

D�z1; z1� � 0; �A27�
and

dD�z1; z�
dz

����
z�z1

� j: �A28�

Fig. 1 shows the result of solving equation (A26), with �a � 1; in

the different cosmologies, for a source redshift of zs � 3:6; and

Fig. 2 shows the values of rdrds=rs; also for �a � 1: We have

tabulated the ratios R� �a � 1�=R� �a � 0� for the different cosmol-

ogies in Table 2.
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