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A B S T R A C T

We investigate the effects of weak gravitational lensing in the standard cold dark matter

cosmology, using an algorithm that evaluates the shear in three dimensions. The algorithm

has the advantage of variable softening for the particles, and our method allows the

appropriate angular diameter distances to be applied to every evaluation location within each

three-dimensional simulation box. We investigate the importance of shear in the distance±

redshift relation, and find it to be very small. We also establish clearly defined values for the

smoothness parameter in the relation, finding its value to be at least 0.83 at all redshifts in

our simulations. From our results, obtained by linking the simulation boxes back to source

redshifts of 4, we are able to observe the formation of structure in terms of the computed

shear, and also note that the major contributions to the shear come from a very broad range

of redshifts. We show the probability distributions for the magnification, source ellipticity

and convergence, and also describe the relationships amongst these quantities for a range of

source redshifts. We find a broad range of magnifications and ellipticities; for sources at a

redshift of 4, 97.5 per cent of all lines of sight show magnifications up to 1.39 and

ellipticities up to 0.23. There is clear evidence that the magnification is not linear in the

convergence, as might be expected for weak lensing, but contains contributions from higher

order terms in both the convergence and the shear. Our results for the one-point distribution

functions are generally different from those obtained by other authors using two-dimensional

(planar) approaches, and we suggest reasons for the differences. Our magnification

distributions for sources at redshifts of 1 and 0.5 are also very different from the results used

by other authors to assess the effect on the perceived value of the deceleration parameter,

and we briefly address this question.
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1 I N T R O D U C T I O N

The gravitational lensing of light by the general form of the large-

scale structure in the Universe is of considerable importance in

cosmology. This `weak lensing' may result in magnification of a

distant source from Ricci focusing owing to matter in the beam,

and shear leading to distortion of the image cross-section. The

strength of these effects depends on the lens and source angular

diameter distances and the specific distribution of matter between

the observer and source. Consequently the effects are likely to be

sensitive to the particular cosmological model. In extreme cases, a

source may be strongly lensed if the light passes close to a massive

structure such as a galaxy, and reconstruction of the mass profiles

for lensing galaxies have been attempted in a number of studies;

see, e.g., Falco, Govenstein & Shapiro (1991), Grogan & Narayan

(1996), and Keeton & Kochanek (1997). These studies have

frequently made use of the `thin-screen approximation' in which

the depth of the lens is considered to be small compared with the

distances between the observer and the lens and the lens and the

source. In the thin-screen approximation the mass distribution of

the lens is projected along the line of sight and replaced by a mass

sheet with the appropriate surface density profile.

The simplicity of the thin-screen approximation has also lead to

its use in weak gravitational lensing studies, where each of the

output volumes from cosmological N-body simulations are treated

as planar projections of the particle distributions within them. To
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compute the distributions in magnification and shear for a large

number of rays passing through the system of screens, use is made

of the multiple lens-plane theory which has been variously

described by Blandford & Narayan (1986), Blandford &

Kochanek (1987), Kovner (1987), Schneider & Weiss (1988a,b)

and summarized by Schneider, Ehlers & Falco (1992). We

describe some of these two-dimensional weak lensing methods in

Section 1.1.

Couchman, Barber & Thomas (1998) considered some of the

shortcomings of these two-dimensional lens-plane methods, and

also rigorously investigated the conditions under which two-

dimensional methods would give equivalent results to integrating

the shear components1 through the depth of a simulation volume.

They showed that, in general, it is necessary to include the effects

of matter stretching well beyond a single period in extent,

orthogonal to the line of sight, but depending on the particular

distribution of matter. It is also necessary to project the matter

contained within a full period on to the plane, assuming the

distribution of matter in the Universe to be periodic with

periodicity equal to the simulation volume side dimension. They

also showed that errors can occur in two-dimensional approaches

because of the single angular diameter distance to each plane,

rather than specific angular diameter distances to every location in

the simulation volume.

These considerations motivated Couchman et al. (1998) to

develop an algorithm to evaluate the shear components at a large

number of locations within the volume of cubic particle simulation

time-slices. In this paper we have applied the algorithm to the

standard cold dark matter (sCDM) cosmological N-body simula-

tions available from the Hydra consortium,2 which we describe in

Section 2.2. By combining the outputs from the algorithm from

sets of linked time-slices going back to a redshift of 4, we are able

to evaluate the overall shear, convergence, magnifications and

source ellipticities (and distributions for these quantities). We first

describe other work which has generated results from studies of

weak lensing in the sCDM cosmology.

1.1 Other work

There are numerous methods for studying weak gravitational

lensing. In `ray-tracing,' (see, for example, Schneider & Weiss

1988b, JaroszynÂski et al. 1990, Wambsganss, Cen & Ostriker

1998, Marri & Ferrara 1998, Jain, Seljak & White 1998, and Jain,

Seljak & White 1999) the paths of individual light rays are traced

backwards from the observer as they are deflected at each of the

projected time-slice planes. The mapping of these rays in the

source plane then immediately gives information about the

individual amplifications which apply. In the `ray-bundle' method,

(see, for example, Fluke, Webster & Mortlock 1999, and Premadi,

Martel & Matzner 1998a,b,c), bundles of rays representing a

circular image are considered together, so that the area and shape

of the bundle at the source plane, (after deflections at the

intermediate time-slice planes), gives the required information on

the ellipticity and magnification. We shall describe briefly five

works which have produced weak lensing results in the sCDM

cosmology.

JaroszynÂski et al. (1990) use the ray-tracing method with two-

dimensional planar projections of the time-slices, and by making

use of the assumed periodicity in the particle distribution, they

translate the planes for each ray, so that it becomes centralized in

the plane. This ensures that there is no bias acting on the ray when

the shear is computed. Each plane is divided into a regular array of

pixels, and the column density in each pixel is evaluated. Instead

of calculating the effect of every particle on the rays, the pixel

column densities in the single period plane are used. They

calculate the two two-dimensional components of the shear (see

Section 5 for the definition of shear) as ratios of the mean

convergence of the beam, which they obtain from the mean

column density. However, they have not employed the net zero

mean density requirement in the planes, (described in detail by

Couchman et al. 1998), which ensures that deflections and shear

can only occur when there are departures from homogeneity. Also,

the matter in the pixel through which the ray is located is

excluded. Their probability distributions for the convergence,

owing to sources at redshifts of 1, 3 and 5, are therefore not

centralized around zero, and exhibit only limited broadening for

sources at higher redshift. They also display the probability

distributions for the shear and the corresponding distributions for

source ellipticity. (The procedures used by JaroszynÂski 1991, and

JaroszynÂski 1992, are improved by the introduction of softening to

each particle to represent galaxies of different masses and radii.)

Wambsganss et al. (1998) also use the ray-tracing method with

two-dimensional planar projections of the simulation boxes, which

have been randomly oriented. Rays are shot through the central

region of 8 h21 Mpc � 8 h21 Mpc only (where h is the Hubble

parameter expressed in units of 100 km s21 Mpc21) and the

deflections are computed by including all the matter in each plane,

allocated to pixels 10 h21 kpc � 10 h21 kpc; covering one period in

extent only. The planes have comoving dimensions of

80 h21 Mpc � 80 h21 Mpc. By using the multiple lens-plane

theory, they show both the differential magnification probability

distribution, and the integrated one for 100 different source

positions at redshift zs � 3:0. One advantage of this type of ray-

tracing procedure is its ability to indicate the possibility of

multiple imaging, where different rays in the image plane can be

traced back to the same pixel in the source plane.

Premadi et al. (1998a) have improved the resolution of their N-

body simulations by using a Monte Carlo method to locate

individual galaxies inside the computational volume, and ensuring

that they match the two-point correlation function for galaxies.

They also assign morphological types to the galaxies according to

the individual environment, and apply a particular surface density

profile for each. To avoid large-scale structure correlations

between the simulation boxes, five different sets of initial

conditions are used for the simulations, so that the individual

plane projections can be selected at random from any set. By

solving the two-dimensional Poisson equation on a grid, and

inverting the equation using a Fast Fourier Transform (FFT)

method, they obtain the first and second derivatives of the

gravitational potential on each plane. They also correctly ensure

that the mean surface density in each lens-plane vanishes, so that a

good interpretation of the effects of the background matter is

made. Their method uses beams of light, each comprising 65 rays.

They show the average shear for a source at zs � 5 contributed by

each of the lens-planes individually, and find that the largest

contributions come from those planes at intermediate redshift, of
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second derivatives of the gravitational potential as the `shear' components,

although, strictly, the term `shear' refers to combinations of these elements

which give rise to anisotropy.
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order z � 1±2. Similarly, they find that the lens-planes which

contribute most to the average magnifications are also located at

intermediate redshifts. The multiple lens-plane theory then

enables the distributions of cumulative magnifications to be

obtained, which are shown to be broad and similar in shape for the

sCDM and cosmological constant models, although the latter

model shows a shift to larger magnification values.

Marri & Ferrara (1998) use a total of 50 lens-planes evenly

spaced in redshift up to z � 10. Their mass distributions have been

determined by the Press±Schechter formalism (which they

outline), which is a complementary approach to N-body numerical

simulations. From this method they derive the normalized fraction

of collapsed objects per unit mass for each redshift. They

acknowledge that the Press-Schechter formalism is unable to

describe fully the complexity of extended structures, the density

profile of the collapsed objects (the lenses), or their spatial

distribution at each redshift. They therefore make the assumption

that the lenses are spatially uncorrelated and randomly distributed

on the planes, and furthermore behave as point-like masses with

no softening. In their ray-tracing approach they follow 1:85 � 107

uniformly distributed rays. The final impact parameters of the rays

are collected in an orthogonal grid of 3002 pixels in the source

plane. Because of the use of point masses, their method produces

very high magnification values, greater than 30 for the sCDM

cosmology. They have also chosen to use a smoothness parameter

�a � 0 in the redshift-angular diameter distance relation (which we

describe in Section 3) which depicts an entirely clumpy universe.

Jain et al. (1998, 1999) have compared weak lensing results for

four different cosmologies using N-body simulations with 2563

particles generated using a parallel adaptive AP3M code. Their

ray-tracing algorithm first projects the dark matter distribution

from each simulation box onto equally spaced lens-planes

between the source and the observer. Usually each plane is the

same angular size as the face of the simulation box would be at the

source redshift, and the orientation of each is random. Secondly,

the shear matrix is computed on a grid within each plane using a

Fourier Transform of the projected density and periodic boundary

conditions. Perturbations on the (more than 106) photon

trajectories are computed and the shear matrix interpolated to

the photon positions. The resulting Jacobian matrix (see equation

7) is then computed in accordance with the multiple lens-plane

theory. From this data they are able to determine the power

spectrum in both the shear and the convergence, and find them to

be almost entirely in the non-linear regimes and in good

agreement with non-linear analytical predictions. The non-linear

effects are strongest in the sCDM cosmology. They also show the

non-Gaussian features in the one-point distribution function for

the convergence and its sensitivity to the density parameter in the

different cosmologies.

1.2 Outline of paper

In Section 2.1 we summarize the main features of the algorithm

for shear in three dimensions, which is detailed in Couchman et al.

(1998). In Section 2.2 we describe the sCDM N-body simulations

and how we combine the different output time-slices from the

simulations to enable the integrated shear along lines of sight to be

evaluated.

Because we evaluate the shear at locations throughout the

volume of the simulation boxes, and because of some sensitivity

(see Couchman et al. 1998) of the results to the smoothness, or

clumpiness, of the matter distribution in the universe, we consider,

in Section 3, our choice of the appropriate angular diameter

distances. We consider the effects of shear on the angular diameter

distance, and the sensitivity of our results to the smoothness

parameter, aÅ . Measurements of the particle clustering within our

simulations, which determines the variable softening parameter

for use in the shear algorithm, also enable a good definition for the

smoothness parameter to be made, and this is discussed.

In Section 4, we describe the formation of structure within the

universe as it evolves, in terms of the magnitudes of the shear

components computed for each time-slice. We see how the rms

values of the components vary with redshift, and also how the set

of highest values behave. We also identify, in terms of the lens

redshifts, where the significant contributions arise. Our conclu-

sions are compared with the results of other authors.

In Section 5, we describe in outline the multiple lens-plane

theory, with particular reference to our application of it. In Section

6, we discuss our results for the shear, convergence, magnifica-

tions, source ellipticities, distributions of these values, and

relationships amongst them.

Our findings are summarized in Section 7, where we compare

and contrast the results with those of other authors who have used

two-dimensional approaches for the sCDM cosmology, and which,

in general, are different from our findings. We also point to

considerable differences between our magnification distributions

obtained for sources at redshifts of 1 and 0.5 and those used by

Wambsganss et al. (1997) who attempted to assess the impact on

the perceived value of the deceleration parameter obtained from

high-redshift Type Ia supernovae data. We mention, in addition,

some other important applications of our results.

2 T H E A L G O R I T H M F O R T H R E E -

D I M E N S I O N A L S H E A R , A N D T H E

C O S M O L O G I C A L S I M U L AT I O N S

2.1 Description of the three-dimensional algorithm

The algorithm we are using to compute the elements of the matrix

of second derivatives of the gravitational potential has been

described fully in Couchman et al. (1998). The algorithm is based

on the standard P3M method (as described in Hockney &

Eastwood 1988), and uses a FFT convolution method. It computes

all of the six independent shear component values at each of a

large number of selected evaluation positions within a three-

dimensional N-body particle simulation box. The P3M algorithm

has a computational cost of order N log 2N, where N is the number

of particles in the simulation volume, rather than O(N2) for

simplistic calculations based on the forces on N particles from

each of their neighbours. For ensembles of particles, used in

typical N-body simulations, the rms errors in the computed shear

component values are typically , 0:3 per cent.

In addition to the speed and accuracy of the shear algorithm, it

has the following features.

First, the algorithm uses variable softening designed to

distribute the mass of each particle within a radial profile which

depends on its specific environment. In this way we are able to set

individual mass profiles for the particles which enables a physical

depiction of the large-scale structure to be made. Our choice for

the appropriate variable softening has been described fully in

Couchman et al (1998), who also describe the sensitivity of the

magnification distributions to the choice of the minimum

softening value. The minimum level set is 0.001 in box units,
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which we have allowed to remain at a fixed physical dimension

throughout the redshift range of the simulations. Thus, we have set

the value to be 0.001 for the z � 0 simulation box, rising to 0.0046

in the earliest simulation box at z � 3:6. At a redshift of 0.5 the

minimum softening value used is 0.0015, which is comparable to

the maximum value of the Einstein radius, 0.0014 in box units, for

a large cluster of 1000 particles and a source at our maximum

redshift of 3.9. At the same time, this scale is approximately of

galactic dimensions, giving a realistic interpretation to the

choice.

Secondly, the shear algorithm works within three-dimensional

simulation volumes, rather than on planar projections of the

particle distributions, so that angular diameter distances to every

evaluation position can be applied. It has been shown (Couchman

et al. 1998) that in specific circumstances, the results of two-

dimensional planar approaches are equivalent to three-dimen-

sional values integrated throughout the depth of a simulation box,

provided the angular diameter distance is assumed constant

throughout the depth. However, by ignoring the variation in the

angular diameter distances throughout the box, errors up to a

maximum of 9 per cent can be reached at a redshift of z � 0:5
for sCDM simulation cubes of comoving side 100 h21 Mpc.

(Errors can be larger than this at high and low redshift, but the

angular diameter distance multiplying factor for the shear

values is greatest here for sources we have chosen at a redshift

of 4.)

Thirdly, the shear algorithm automatically includes the

contributions of the periodic images of the fundamental volume,

essentially creating a realization extending to infinity. Couchman

et al. (1998) showed that it is necessary to include the effects of

matter well beyond the fundamental volume in general (but

depending on the particular particle distribution), to achieve

accurate values for the shear. Methods which make use of only the

matter within the fundamental volume may suffer from inadequate

convergence to the limiting values.

Fourthly, the method uses the `peculiar' gravitational potential,

f , through the subtraction of a term depending upon the mean

density. Such an approach is equivalent to requiring that the net

total mass in the system be set to zero, and ensures that we deal

only with light ray deflections arising from departures from

homogeneity; in a pure Robertson±Walker metric we would want

no deflections.

2.2 The sCDM large-scale structure simulations

We have chosen, in this paper, to apply the shear algorithm to the

sCDM cosmological N-body simulations available from the Hydra

consortium, and produced using the `Hydra' N-body hydrody-

namics code, as described by Couchman, Thomas & Pearce

(1995). Each time-slice from this simulation contains 1283 dark

matter particles, each of 1:2 � 1011 h21 solar masses, with a CDM

spectrum in an Einstein±de Sitter universe, and has comoving box

sides of 100 h21 Mpc. The output times for each time-slice have

been chosen so that consecutive time-slices abut, enabling a

continuous representation of the evolution of large-scale structure

in the Universe. However, to avoid unrealistic correlations of the

structure through consecutive boxes, we arbitrarily rotate, reflect

and translate the particle coordinates in each before the boxes are

linked together. We have chosen to analyse all the simulation

boxes back to a redshift of 3.9, a distance which is covered by a

continuous set of 33 boxes (assuming the source in this case at

zs � 3:9 to be located at the far face of the 33rd box, which has a

nominal redshift of 3.6). The simulations used have a power

spectrum shape parameter of 0.5, and the normalization, s8, has

been taken as 0.64 to reproduce the number density of clusters,

according to Vianna & Liddle (1996).

We establish a regular array of 100 � 100 lines of sight through

each simulation box, and compute the six independent shear

components at 1000 evenly spaced evaluation positions along

each. The 1000 evaluation positions on each line of sight is well

matched to the minimum variable softening, giving adequate

sampling in the line of sight direction; we have tested our method

using up to a total of 4 � 106 lines of sight, and have found that

whilst this smooths the distribution plots of Section 6 at the high

magnification end and gives rise to higher maximum values of the

magnification, the statistical widths of the plots are virtually

unchanged. Since we are dealing with weak lensing effects and are

interested only in the statistical distribution of values, these lines

of sight adequately represent the trajectories of light rays through

each simulation box. It is sufficient also to connect each `ray' with

the corresponding line of sight through subsequent boxes in order

to obtain the required statistics of weak lensing. This is justified

because of the random re-orientation of each box performed

before the shear algorithm is applied.

3 A N G U L A R D I A M E T E R D I S TA N C E S

One of the advantages of being able to evaluate the shear

components at a large number of locations within the volume of

each time-slice is that we are able to apply the appropriate angular

diameter distance factors to each as part of the procedure to

determine the magnifications and ellipticities. The Jacobian

matrix at each evaluation position,

A �
1 2 c11 2c12

2c21 1 2 c22

 !
; �1�

is used to determine the magnification at that point, and contains

the two-dimensional effective lensing potentials which are related

to the computed three-dimensional shear, 2f=xixj; through

cij �
DdDds

Ds

:
2

c2

�
2f�z�
xixj

dz; �2�

where Dd, Dds, and Ds are the angular diameter distances from the

observer to the lens, the lens to the source, and the observer to the

source, respectively, and c is the velocity of light. The integration

is along the line of sight. The angular diameter distances depend

very much on the distribution of matter, so that it is necessary to

have available appropriate values for the particular distribution

being investigated.

Dyer & Roeder (1972, 1973) made assumptions about the type

of matter distribution to obtain a second-order differential

equation for the angular diameter distance in terms of the density

parameter, V, for the universe, and the redshift of the source:

�z� 1��Vz� 1� d2 D

dz2
� 7

2
Vz� V

2
� 3

� �
dD

dz

� 3

2
�aV� jsj2

�1� z�5
" #

D � 0: �3�

aÅ is the smoothness parameter, which is taken to be the fraction of

mass in the universe which is smoothly distributed, and s is the
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optical scalar for the shear, introduced by matter surrounding the

beam. They considered the convenient scenario in which the light

beams travel through the homogeneous low density, or empty

regions, passing far away from the clumps, so that the shear

becomes negligible. However, we must consider whether the shear

in our particle simulation time-slices is able to significantly affect

our chosen values for the angular diameter distances.

Schneider & Weiss (1988a) showed that, in general, the effects

of shear must be taken into account. For rays weakly affected by

shear and with low amplifications, the linear terms in the shear

almost cancel, but higher order terms become more important.

However, the probability for rays being affected by shear is

dramatically lower in model universes with �a � 0:8 compared

with universes with �a � 0. (We shall show shortly that the values

of aÅ in our sCDM simulations are always at least 0.83, so that

even at z � 0 the matter distribution may be considered smooth

according to the usual definition of aÅ .) In summary, we might

expect the number of rays affected by shear to be low in smooth

matter distributions, and then the effect to be only of second

order.

Watanabe & Tomita (1990) concluded that, on average, the

effect of shear on the distance-redshift relation is small, providing

the scale of the inhomogeneities is greater than or equal to galactic

scales. This is in agreement with Futamase & Sasaki (1989) who

showed that, in most cases, the shear does not contribute to the

amplification.

Our own work is conducted using a cosmological simulation in

which the distribution of matter is very smooth. Furthermore, our

minimum softening scale is of the order of galactic dimensions, so

that we feel justified in accepting that the shear plays only a

second-order role in the distance±redshift relation in our sCDM

data-set. (We are able to quantify the effects of shear from our

results in Section 6, and find that they are negligible.) With s , 0;
therefore, equation (3) immediately reduces to the well-known

Dyer±Roeder equation which has the following generalized

solution for the angular diameter distance between redshifts of

z1 and z2 for V � 1 :

D�z1; z2� � c

H0

1

2b

�1� z2�b2
5
4

�1� z1�b�
1
4

2
�1� z1�b2

1
4

�1� z2�b�
5
4

24 35: �4�

b is expressed in terms of arbitrary aÅ :

b � 1

4
�25 2 24 �a�12 : �5�

We can write the left hand side of equation (4), equivalently, as

D�z1; z2� � c
H0

r�z1; z2�; in which r�z1; z2� is the dimensionless

angular diameter distance. We show in Fig. 1 the value of the

dimensionless multiplying factor, R ; rdrds=rs; as it applies to

different time-slices at different redshifts, assuming sources at

zs � 3:9; 3.0, 1.9, 1.0 and 0.5. (These values correspond to the

redshifts of our time-slices, and have been chosen to be close to

z � 4; 3, 2, 1 and 0.5.) We have assumed zero shear, a completely

smooth distribution of matter, � �a � 1�; and V � 1. We see that the

peak in this factor occurs near z � 0:5 for a source at redshift 4.

From the output of our algorithm we are able to obtain an

estimate of the clumpiness or smoothness in each time-slice. In the

earliest time-slice at z � 3:6; (next to z � 3:9), there is a mass

fraction of 0.026 in clumps, giving �a�z � 3:6� � 0:97; and at z �
0 the fraction is 0.17, giving �a�z � 0� � 0:83. Whilst we have not

accurately tried to assess the mean value for aÅ extending to

different source redshifts, it is clear that the value throughout is

close to 1, and almost equivalent to the `filled beam' approximation.

This result concurs with Tomita (1998) who finds aÅ to be close to

1 in all cases. We show in Fig. 2 how similar the multiplying

factor is for the values �a � 0:83 and 1.0, and how these compare

with a value of �a � 0 for an entirely clumpy universe. The

maximum discrepancy between �a � 0:83 and �a � 1:0 is 5.2 per

cent for a source at zs � 4; 2.4 per cent for zs � 2; and for sources

nearer than zs � 1 the maximum discrepancy is well below 1 per

cent. We have compared the sCDM cosmology with alternative

simulations using a power spectrum shape parameter of 0.25 as

determined experimentally on cluster scales (see Peacock &

Dodds 1994), and find that then the smoothness parameter

varies only between 0.88 and 0.99, i.e., a much narrower range

and closer to unity. This confirms that the sCDM cosmology

(with shape parameter 0.5) gives rise to more clumpiness at late

times, allowing higher values of magnification and shear to

occur.
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Figure 1. The dimensionless multiplying factor, R � rdrd s=rs; assuming

sources at different redshifts. The uppermost curve for a source at zs � 4;

peaks at z � 0:52; the next curve is for zs � 3 and peaks at z � 0:48; the

next curve is for zs � 2 and peaks at z � 0:40; the next curve is for zs � 1

and peaks at z � 0:32; the lowest curve is for zs � 0:5 and peaks at

z � 0:20.

Figure 2. The multiplying factor, rdrd s=rs; for a source at redshift 4, with

smoothness parameters of 1 (uppermost curve), 0.83 (middle curve), and 0

(lowest curve).
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4 T H E F O R M AT I O N O F S T R U C T U R E

In this section we consider the values of the two-dimensional

effective lensing potentials (calculated using equation 2) in each

time-slice. Without at first applying the angular diameter distance

multiplying factors, we can, in a simplistic way, obtain values

which characterize each time-slice, independent of its redshift, to

give information about the development of structure.

The shear algorithm generates the six independent three-

dimensional shear component values (expressed in box units), and

we have chosen to compute them at 1000 evaluation positions

along 100 � 100 lines of sight in each simulation time-slice. It is

then possible to evaluate the two-dimensional effective lensing

potentials independently, using equation 2, at each of, say, 50

locations along every line of sight by integrating the component

values and converting to physical units. The integration of the

values in this way and the conversion to physical units requires the

computed values to be multiplied by the factor B�1� z�2rdrd s=rs;
where B � �c=H0��2=c2�GMpart � �comovingboxdepth�22. (G is

the universal gravitational constant and Mpart is the particle mass.)

For the simulation boxes we have used, which have comoving

dimensions of 100 h21 Mpc, B � 3:733 � 1029. The �1� z�2
factor occurs to convert the comoving code units to physical

units.

By integrating the values and applying only the factor B�1� z�2
(without the angular diameter distance factor), we obtain the

characteristic values for each time-slice. The middle curve of Fig.

3 shows the rms values for the sum of the diagonal terms in

equation (2) calculated in this way for each time-slice. These

values are closely associated with the surface density, which in

turn determines the magnifications produced in the time-slice. We

notice that the values for these combined components very

slowly decreases towards z � 0. This same trend is apparent with

the other components individually. It has the interesting

interpretation that, even though structure is forming (to produce

greater magnification locally), the real expansion of the universe

(causing the mean particle separation to increase) just outweighs

this in terms of the magnitudes of the component values.

Nevertheless, the formation of structure can be seen; the top

curve in Fig. 3 shows the result of taking the mean of just the set

of highest values in each time-slice, again multiplied only by the

factor B�1� z�2. This shows an initial fall as the universe

expands and before structure has begun to form, and then at later

times an increase in the mean values, indicative of the existence

of dense (bound) structures. The lowest curve in Fig. 3 shows the

set of highest values for one of the off-diagonal components,

including the multiplication by B�1� z�2; and this shows a

similar trend.

However, when the computed values are multiplied by the full

conversion factors, including the angular diameter distance

factors, rdrd s=rs �; R�; we see in Fig. 4 that the peaks are

extremely broad, indicating that significant contributions to the

magnifications and ellipticities can arise in time-slices covering a

wide range of redshifts, and not just near z � 0:5 where R has its

peak (for sources at zs � 4).

Premadi et al. (1998a) have performed similar work. For the

shear and magnification they find that the individual contribution

owing to each of their lens-planes is greatest at intermediate

redshifts, of order z � 1±2; for sources located at zs � 5. Premadi

et al. (1998b,c) also report their results for the shear for sources at

zs � 3; and again find very broad peaks covering a wide range of

(intermediate) lens-plane redshifts.

5 M U LT I P L E L E N S - P L A N E T H E O RY

As described in Section 2.2, we establish 1000 evaluation

positions along each of the 100 � 100 lines of sight through

each simulation time-slice, and the shear algorithm computes the

six independent second derivatives of the gravitational potential at

each position. By integration of the computed values using

equation (2), we establish the matrices of two-dimensional

effective lensing potentials,

U i � c i
11 c i

12

c i
21 c i

22

 !
; �6�
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Figure 3. Curves characterizing the time-slices, established without the

inclusion of the angular diameter distance multiplying factors. Middle

curve: the rms value in each time-slice of the sum of the diagonal elements

of the Jacobian matrix. Top curve: the mean of the highest values of the

summed diagonal elements. Lowest curve: the mean of the highest values

for one of the off-diagonal elements.

Figure 4. Components in each time-slice converted to absolute values,

including the angular diameter distance factors, for sources at zs � 4.

Middle curve: the rms value in each time-slice of the sum of the diagonal

elements of the Jacobian matrix. Top curve: the mean of the highest values

of the summed diagonal elements. Lowest curve: the mean of the highest

values for one of the off-diagonal elements.
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at each of 50 positions along every line of sight in each simulation

box. (We may take c i
12 � c i

21; because we are dealing with a weak

shear field which is smoothed by the variable particle softening,

ensuring that the gravitational potential and its derivatives are

well-behaved continuous functions.) The Jacobian matrix, A, is

then evaluated at successive positions along each line of sight as it

develops in accordance with the multiple lens-plane theory, which

is summarized by Schneider et al. (1992). The final Jacobian

matrix after N deflections is

A total � I 2
XN

i�1

U iA i; �7�

where I is the unit matrix, and the intermediate Jacobian matrices

are

A j � I 2
Xj21

i�1

bijU iA i; �8�

where

bij �
Ds

Dis

Dij

Dj

; �9�

in which Dj, Dis and Dij are the angular diameter distances to the

jth lens, that between the ith lens and the source, and that between

the ith and jth lenses, respectively.

The magnification, m , at any position, is given in terms of the

Jacobian at that point:

m � �detA �21; �10�
so that we can assess the magnification as it develops along a line

of sight, finally computing the emergent magnification after

passage through an entire box or set of boxes. The convergence, k ,

is defined by

k � 1

2
�c11 � c22� �11�

from the diagonal elements of the Jacobian matrix, and causes

isotropic focussing of light rays, and so isotropic magnification of

the source. Thus, with convergence acting alone, the image would

be the same shape as, but a different size from, the source.

The shear, g , in each line of sight, is given by

g2 � g2
1 � g2

2 ;
1

4
�c11 2 c22�2 � c2

12: �12�

Shear introduces anisotropy, causing the image to be a different

shape, in general, from the source.

From equation (10), and these definitions,

m � �1 2 c11 2 c22 � c11c22 2 c2
12�21; �13�

so that with weak lensing the magnification reduces to

m . 1� 2k� 3k2 � g2 � O�k3; g3�: �14�
In the presence of convergence and shear, a circular source

becomes elliptical in shape, and the ellipticity, e , defined in terms

of the ratio of the minor and major axes, becomes

e � 1 2
1 2 k 2 g

1 2 k� g
; �15�

which reduces to

e . 2g�1� k 2 g� � O�k3; g3� �16�

in weak lensing.

The multiple lens-plane procedure allows values and distribu-

tions of the magnification, ellipticity, convergence and shear to be

obtained at z � 0 for light rays traversing the set of linked

simulation boxes starting from the chosen source redshift. The

ability to apply the appropriate angular diameter distances at every

evaluation position avoids the introduction of errors associated

with planar methods, and also allows the possibility of choosing

source positions within a simulation box if necessary. This may be

useful when considering the effects of large-scale structure on real

observed sources at specific redshifts, or if the algorithm is to be

applied to large simulation volumes.

6 R E S U LT S

We first examine the importance of the smoothness parameter, aÅ ,

in the distance-redshift relation, to the magnification distribution,

by computing the magnifications owing to a single (assumed

isolated) simulation box at z � 0:5 for a source at zs � 4. (At this

box redshift the contribution to the magnifications is expected to

be near the maximum.) The magnification distributions arising for

�a � 1 and �a � 0:83; (deduced from our simulations, as explained

in Section 3) are virtually indistinguishable, with differences

occuring only at the high magnification (low probability) ends of

the distributions. The distributions covering the full range of

redshift, using all the simulation boxes, show a small sensitivity to

the smoothness parameter. We have chosen therefore to present

our results based on a smoothness parameter of �a � 1 throughout.

We have chosen to assume source redshifts, zs, close to 4, 3, 2, 1

and 0.5, and shall refer to the sources in these terms. The actual

redshift values are 3.9, 3.0, 1.9, 1.0 and 0.5 respectively,

corresponding to nominal time-slice redshifts in our sCDM

simulation. For each source redshift we have evaluated the final

emergent Jacobian matrix at z � 0 for all 10000 lines of sight, by

linking all the simulation boxes between the source redshift and

z � 0; as described in Section 5, and, by manipulation of the data

according to the multiple lens-plane equations, we have been able

to produce all the required values for the magnifications,

ellipticities, shear and convergence.

Figs 5 and 6 show the distributions of the magnifications, m , for

the five source redshifts, and for all source redshifts there is a

significant range. The rms fluctuations for the magnifications

about the mean value of kml � 1 are displayed in column 2 of

Table 1 for each source redshift. However, since the magnification

distributions are asymmetrical, we have calculated the values,

m low and mhigh, above and below which 97.5 per cent of all lines of

sight fall. These are displayed in columns 3 and 4 of Table 1. The

values contrast with the values obtained from the alternative

cosmology with a power spectrum shape parameter of 0.25 which

are displayed in Table 2. In general we find that the distributions

for the magnifications, convergence, shear and ellipticities are all

broader in the sCDM cosmology (with shape parameter 0.5). This

is as a result of the more clumpy character of the sCDM

cosmology.

The accumulating number of lines of sight having magnifica-

tions greater than the abscissa value is shown in Fig. 7 for the five

different source redshifts, and clearly shows the distinctions at the

high magnification end.

q 1999 RAS, MNRAS 310, 453±464
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In Fig. 8 we show the magnification, m , plotted against the

convergence, k , for zs � 4; and see that the magnification is

clearly not linear in k as expected for small magnitudes of k . This

is true for all our source redshifts. The non-linearity arises because

of the presence of the higher order terms in the expression for m
given by equation (14), and we show for comparison the curve of

m � 1� 2k� 3k2.

We would generally expect the shear, g , to fluctuate strongly

for light rays passing through regions of high density (high

convergence), and we indeed find considerable scatter in the shear

when plotted against the convergence. Fig. 9, however, shows the

result of binning the convergence values and calculating the

average shear in each bin, for sources at zs � 4. We see that

throughout most of the range in k the average shear increases very

slowly, and closely linearly. (At the high k end there are too few

data points to establish accurate average values for g.) This result

suggests that there may be a contribution to the magnification

from the shear, and we discuss this later in this section.

Fig. 10 shows the distributions in the convergence, k , primarily

responsible for the magnifications. The rms values for the

convergence are 0.064 (for zs � 4), 0.058 (for zs � 3), 0.047

(for zs � 2), 0.031 (for zs � 1) and 0.016 (for zs � 0:5). These

values are entirely consistent with the rms fluctuations for the

magnification about the mean (stated above), being slightly below

half the rms magnification values (see equation 14).

The distributions in the shear, g , (defined according to equation

12) for the five source redshifts, are broadest, as expected, for the

highest source redshifts, and, for zs � 4; 97.5 per cent of all lines

of sight have shear values below 0.126. The ellipticity, e , in the

image of a source is primarily produced by the shear, and we show

in Fig. 11 the distributions in e for the five source redshifts. The

peaks in the ellipticity distributions occur at e � 0:075 for zs � 4;
0.075 for zs � 3; 0.057 for zs � 2; 0.034 for zs � 1 and 0.016 for

zs � 0:5. Fig. 12 displays the accumulating number of lines of

sight with e greater than the abscissa value. For zs � 4; we find

that 97.5 per cent of all lines of sight have ellipticities up to 0.23.

In Fig. 13 we see that the ellipticity is very closely linear in terms

of g throughout most of the range in g . The scatter arises because

of the factor containing the convergence, k , in equation (16).

Finally, we attempted to see if there was a contribution to the

magnification from the shear as implied by the distance±redshift

relation (equation 3). We found considerable scatter, as expected,

in the plots of magnification versus shear, but we found in Fig. 9 a

tenuous connection between the shear and the convergence,

indicating that there may be a similar connection between the

magnification and the shear. We see from equation (14) that the

effect of shear is only of second order (as established by Schneider

& Weiss 1988a). By binning the shear values and calculating the

average magnification in each bin, we are able to show (Fig. 14)

that there may be a slow increase in kml with increasing shear. Fig.

14 is for sources at zs � 4. Although there are insufficient data

points at the high shear end, it still seems likely that the effects of
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Figure 5. Probability distributions for the magnification, for zs � 4; 2 and 0.5.

Figure 6. Probability distributions for the magnification, for zs � 3; and 1.

Table 1. SCDM cosmology.
Column 2 shows the rms
fluctuations for the magnifi-
cations, m rms, about the mean
value of kml � 1 for the
various source redshifts, zs;
column 3 shows the magnifi-
cation value m low for each
redshift above which 97.5 per
cent of all lines of sight fall;
column 4 shows the magnifi-
cation values mhigh for each
redshift below which 97.5 per
cent of all lines of sight fall.

zs m rms m low mhigh

4 0.171 0.78 1.39
3 0.149 0.82 1.34
2 0.115 0.84 1.26
1 0.073 0.89 1.16
0.5 0.037 0.91 1.07

Table 2. As for Table 1, but
alternative cosmology with
power spectrum shape para-
meter 0.25.

zs m rms m low mhigh

4 0.126 0.85 1.30
3 0.111 0.86 1.26
2 0.088 0.88 1.20
1 0.056 0.93 1.13
0.5 0.027 0.97 1.05
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shear on the mean magnification may be at least 10 per cent for

shear values greater than about 0.12. However, interestingly, only

3.2 per cent of the data points in our simulation produced shear in

excess of 0.12. According to equation (3), the shear has an effect

in the distance-redshift relation equivalent to increasing the

effective smoothness parameter, aÅ . However, by substituting the

mean shear value determined for sources at zs � 0:5 the effect on

aÅ is found to be completely negligible. Furthermore, the

importance of the effect reduces with redshift, so that our

conclusion in Section 3, to ignore the effects of shear in the

distance±redshift relation, can now be justified.

7 D I S C U S S I O N O F R E S U LT S

In our own work we have had to consider what appropriate

angular diameter distance values should be applied to our data.

Our decision to ignore the effects of shear in the distance±redshift

relation (equation 3) in general is justified because we found that

significant effects may occur only in , 3:2 per cent of the lines of

sight, and the impact on the effective value of the smoothness

parameter, aÅ , by substituting the mean values of the shear, is

completely negligible at all redshifts.

We also needed to include a suitable value for the smoothness

parameter, aÅ , and we found that it varied between approximately

0.97, in the z � 3:6 time-slice, and 0.83, at z � 0. We checked the

significance for the angular diameter distance multiplying factor

with these extreme values, and we also investigated the effects of

aÅ on the magnification distributions. As a result of this work we

chose to proceed with our analysis for the sCDM cosmology on

the basis of �a � 1.

In Section 4 we studied the `intrinsic' computed shear values

before the application of the angular diameter distance multi-

plying factors. We found that the universal expansion just

outweighs the formation of structure when viewed in terms of

the shearing on light. The formation of structure could be seen by

considering only the sets of highest values in each time-slice, and

then the mean values of these initially fall, before increasing

slowly at the onset of structure formation. When the appropriate

angular diameter distance multiplying factors were applied to the

computed values, we then found the further interesting result that

there can be considerable contributions to the shear and

magnification arising from time-slices covering a very broad
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Figure 7. The accumulating number of lines of sight with magnifications

greater than the abscissa value, for zs � 4; 3, 2, 1 and 0.5.

Figure 8. m versus k for zs � 4 (dots). The continuous line, shown for

comparison, represents m � 1� 2k� 3k2.

Figure 9. Shear versus convergence for sources at zs � 4 (dots), and the

average shear (full line) in each of the k bins, which shows a slow and

nearly linear increase with increasing convergence.

Figure 10. The probability distributions for the convergence, k , for the

five different source redshifts.
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range of redshifts. It will be very interesting in the future to

compare these results with those from different cosmologies.

In Section 6 we showed results based on sources at five

different redshifts, namely zs � 4; 3, 2, 1 and 0.5. We showed

distributions in the magnification (and details of the high

magnification end of these distributions), the convergence and

the ellipticity (which closely resembles the distribution in the

shear), and also the relationships amongst these various quantities.

Fig. 8 shows the strong departure from the linear regime for the

magnification as a function of the convergence, whilst Fig. 13

shows a closely linear relationship between the ellipticity and the

shear. Fig. 9 suggests a slow increase in shear with increasing

convergence, broadly as expected. For sources at zs � 4; 97.5 per

cent of all lines of sight have magnification values up to 1.39. (The

maximum magnifications depend on the choice of the minimum

softening in the code, although the overall distributions are very

insensitive to the softening.) In particular, we found rms

fluctuations in the magnification (about the mean) as much as

0.171 for sources at zs � 4. Even for sources at zs � 0:5 there is a

measurable range of magnifications up to 1.07 for 97.5 per cent of

the lines of sight.

Of particular importance is how the results of Section 6 may

vary with the cosmology and how our results compare with those

of other workers. We shall report on the results from other

cosmologies in a future publication, and shall discuss here the

comparisons of our present results with those other authors whose

methods were summarized in the Introduction.

Because of the way in which JaroszynÂski et al. (1990)

determine the magnifications, their distributions do not have

mean magnifications of 1. In addition, their dispersions in the

convergence for sources at zs � 1 and zs � 3 can be seen to be

considerably lower than our values and they appear to show very

little evolution with redshift. Unfortunately their method does not

assume a net zero mean density for the projected mass

distribution, or make use of the periodic images of each lens-

plane. The smoothing of the mass distribution is essentially in

terms of the pixellation in each lens-plane.

Wambsganss et al. (1998)find magnifications up to 100 and

correspondingly highly dispersed distributions, very much larger

than ours for zs � 3. (Their magnification distributions show

separately the results for multiply-imaged sources and singly-

imaged sources.) The very wide distributions they find have also

enabled them to support a m22 power-law tail in the distribution
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Figure 11. The probability distributions for the ellipticity, e , for the five

different source redshifts. Figure 13. Source ellipticity versus shear for zs � 4 (dots). The straight

line, shown for comparison, represents e � 2g.

Figure 12. The accumulating number of lines of sight with e greater than

the abscissa value, for the five source redshifts.

Figure 14. The average magnification in each shear bin, for sources at

zs � 4. The overall mean magnification at kml � 1 is shown for

comparison.
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which is predicted by Schneider et al. (1992)in the case of

magnification by point sources when m @ 1. The high magnifica-

tion tail in the distributions almost certainly derives from the low

value of the (fixed) softening scale resulting from the `smearing'

of the mass distribution in the 10 h21 kpc � 10 h21 kpc pixels. One

advantage of their method is the ability to observe strong lensing

events, but a disadvantage may be the fixed softening which

makes the large-scale structure (responsible for weak lensing)

difficult to represent.

The magnification distributions of Premadi et al. (1998a)

appear incomplete, but the range in magnifications appears to be

rather similar to ours for sources at zs � 3. This is reassuring

because, although their method relies on two-dimensional

projections of the simulation boxes, they include many of the

essential features to which we have drawn attention, for example,

an assumed periodicity in the matter distribution, randomly

chosen initial conditions to avoid structure correlations between

adjacent simulation boxes, the net zero mean density requirement,

realistic mass profiles for the particles, and use of the filled beam

approximation with a smoothness parameter, �a � 1.

Marri & Ferrara (1998) show very much wider magnification

distributions than we have found, and also very high maximum

values, which occur as a result of using point particles rather than

smoothed particles. We also disagree with their choice of �a � 0;
which is representative of an entirely clumpy universe, as opposed

to our finding that the sCDM universe is close to being smooth at

all epochs.

Jain et al. (1999) show one-point distribution functions for k,

assuming sources at zs � 1; for all their four cosmologies and

using different (fixed) smoothing scales in each. They describe the

increasing non-Gaussianity of the distribution functions as the

smoothing scale is reduced and the increasing tail at high k . They

also describe the shape of the distribution functions for negative k
which results from the rate of structure formation in the different

cosmologies, and claim the interesting conclusion that the

minimum value of k is proportional to the density parameter.

This is a result we intend to investigate in a forthcoming

publication. However, in the sCDM cosmology the shape of our

distribution functions is clearly non-Gaussian and qualitatively

similar to those of Jain et al. (1999). In addition, our range of

values for the convergence for zs � 1 appears to be similar and

therefore likely to give similar results for the magnification

distributions.

In our own work 97.5 per cent of the lines of sight have

ellipticities up to 0.23 for zs � 4. At the peaks of the distributions

we found values of 0.075 and 0.034 for e for sources at zs � 3 and

1 respectively. These are somewhat lower than the values of 0.095

�zs � 3� and 0.045 �zs � 1� found by JaroszynÂski et al. (1990).

Rather surprisingly, however, their peak values in the distributions

for the shear are quite similar to our own, especially for sources at

zs � 3.

We now turn to the results of weak lensing studies in a specific

application. The magnification distributions may have an impact

on the interpretation of the magnitude data for high-redshift Type

Ia supernovae reported by Riess et al. (1998), since we have seen

in Section 6 the possible range of magnifications that may apply to

distant sources. The high-redshift supernovae data include sources

up to redshifts of 0.97, so that the effects of the large-scale

structure should not be ignored when interpreting the peak

magnitudes and distance moduli. Wambsganss et al. (1997) have

investigated the effects of the range of magnifications produced by

weak lensing on the perceived value of the deceleration parameter,

q0. Their cosmological simulations with density parameter V0 �
0:4 and cosmological constant L0 � 0:6; have a normalization

s8 � 0:79. The magnification values above and below which

97.5 per cent of all lines of sight fall are mlow � 0:951 and mhigh �
1:101 for source redshifts of zs � 1; and mlow � 0:978 and mhigh �
1:034 for zs � 0:5. These may be compared with the values shown

in Tables 1 and 2 for the magnification ranges in the two critical

density cosmologies we have investigated. Whilst our magnifica-

tion ranges are slightly larger in both cases they are quite similar

to the ranges found by Wambsganss et al. (1997). They also report

that the lensing-induced dispersions in their critical density

cosmology are three times larger, but this cosmology uses a

normalization of s8 � 1:05 which overproduces the present-day

rich cluster abundances. Since Reiss et al. (1998) have concluded

in favour of an open universe with a cosmological constant, we

shall be reporting in a future paper on the lensing-induced

dispersions in simulations with V0 � 0:3 and L0 � 0:7. In this

cosmology structure formation occurs earlier, giving rise to the

possibility that the dispersions in magnification, distance modulus,

and hence q0, could be larger than reported by Wambsganss et al.

(1997).

Another area affected by the presence of a distribution in

magnifications is the luminosity function for quasars or high-

redshift galaxies. Most sources are demagnified (the median value

for m is always just less than 1) which will remove many galaxies

from the dim end of the luminosity function in a flux-limited

survey, but at zs � 2; say, we find an rms fluctuation in the

magnifications of 11.5 per cent which will also allow some dim

galaxies to be magnified and observed, where otherwise they

would not have been.

In addition to considering these matters further we hope to

address the following questions in the immediate future.

(i) How does the redshift dependence of the shear matrix

change in low-density universes? Of particular interest is the flat

model with V0 � 0:3 and L0 � 0:7; in view of the recent work by

Riess et al. (1998) indicating the likelihood of this type of

universe. In critical density universes it is believed that clustering

continues to grow to the present day, and this is indicated by the

results shown in Fig. 3. However, in low-density universes,

structures should have formed by z , V21
0 2 1; so that the shapes

of the curves in Fig. 3 are likely to be very different.

(ii) How do our distributions in the magnification, ellipticity,

shear and convergence vary amongst different cosmologies? With

low-density universes, weak lensing effects are likely to be very

different owing to four main factors: (1) the formation of structure

at earlier times, and its persistence through periods in which the

contribution to the lensing is significant; (2) dilution of the effects

as the universe expands beyond the formation of structure; (3)

different values for the angular diameter distances; (4) the lower

average values for the computed shear components in view of the

lower density values in the universe.

(iii) Do the high-magnification and low-ellipticity lines of sight

occur because of the effects of individual large clusters, or as a

result of continuous high-density regions such as filamentary

structures?

(iv) How frequently do lines of sight in the direction of multiply

imaged quasars coincide with lines of high convergence associated

with the general form of the large-scale structure (independent of

the lensing galaxy)? There is clear evidence (Thomas, Webster &

Drinkwater 1995) of increased numbers of near-neighbour

galaxies (when viewed along the line of sight) to bright quasars,
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and this raises the intriguing possibility that some sub-critical

lenses may become critical (and produce multiple images of

background sources) in the presence of high-density large-scale

structure along the line of sight. According to the multiple lens-

plane theory it is entirely consistent that the determinant of the

developing Jacobian matrix along a high-convergence line of sight

may change sign in the presence of a high surface density (but

sub-critical) lens. In such a scenario modifications to the models

for the surface density profile of the lensing galaxy would also be

required.
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