
MNRAS 436, 150–162 (2013) doi:10.1093/mnras/stt1545
Advance Access publication 2013 October 3

Sussing Merger Trees: The Merger Trees Comparison Project

Chaichalit Srisawat,1‹ Alexander Knebe,2 Frazer R. Pearce,3 Aurel Schneider,1

Peter A. Thomas,1 Peter Behroozi,4,5 Klaus Dolag,6,7 Pascal J. Elahi,8 Jiaxin Han,9,10

John Helly,10 Yipeng Jing,11 Intae Jung,12 Jaehyun Lee,12 Yao-Yuan Mao,4,5

Julian Onions,3 Vicente Rodriguez-Gomez,13 Dylan Tweed14 and Sukyoung K. Yi12

1Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
2Departamento de Fı́sica Teórica, Módulo C-15, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain
3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
4Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305, USA
5SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
6University Observatory Munich, Scheinerstr. 1, D-81679 Munich, Germany
7Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Strasse 1, D-85740 Garching bei München, Germany
8Sydney Institute for Astronomy, University of Sydney, Sydney NSW 2016, Australia
9Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China
10Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
11Center for Astronomy and Astrophysics, Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
12Department of Astronomy and Yonsei University Observatory, Yonsei University, Seodaemoon-gu Yonsei-ro 50, Seoul 120-749, Republic of Korea
13Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA, 02138, USA
14Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Accepted 2013 August 14. Received 2013 August 13; in original form 2013 July 12

ABSTRACT
Merger trees follow the growth and merger of dark-matter haloes over cosmic history.
As well as giving important insights into the growth of cosmic structure in their own right,
they provide an essential backbone to semi-analytic models of galaxy formation. This paper
is the first in a series to arise from the Sussing Merger Trees Workshop in which 10 different
tree-building algorithms were applied to the same set of halo catalogues and their results com-
pared. Although many of these codes were similar in nature, all algorithms produced distinct
results. Our main conclusions are that a useful merger-tree code should possess the following
features: (i) the use of particle IDs to match haloes between snapshots; (ii) the ability to skip
at least one, and preferably more, snapshots in order to recover subhaloes that are temporarily
lost during merging; (iii) the ability to cope with (and ideally smooth out) large, temporary
fluctuations in halo mass. Finally, to enable different groups to communicate effectively, we
defined a common terminology that we used when discussing merger trees and we encourage
others to adopt the same language. We also specified a minimal output format to record the
results.

Key words: methods: numerical – galaxies: evolution – galaxies: haloes – dark matter.

1 IN T RO D U C T I O N

In the era of precision cosmology, numerous very large galaxy
survey programmes are either currently underway or in development
(just to name a few, BOSS, PAU, WiggleZ, eBOSS, BigBOSS,
DESpec, PanSTARRS, DES, HSC, Euclid, WFIRST, etc.). The full
power of these programmes to shed light on the nature of dark
energy and dark matter can only be realized if the observational
results are compared to theoretical expectations. Thus, the level of

� E-mail: cs390@sussex.ac.uk

precision required can only be achieved if the theoretical framework
is equally well controlled.

Numerical simulations underpin the theoretical predictions for
structure formation and growth. They are required because the struc-
tures that host the galaxies we observe have densities well in excess
of the mean and their growth is highly non-linear. Large simulations
containing billions (soon to be trillions) of tracer particles have be-
come common in recent years (e.g. Millennium, DEUS, Bolshoi,
MillenniumXXL, Horizon4pi, Jubilee, see Kuhlen, Vogelsberger &
Angulo 2012, for a recent review) and these models cover volumes
that are well matched to aforementioned galaxy surveys covering
increasingly large cosmological volumes. But accurate numerical

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 151

simulations are not the end of the story. In order to produce a
mock galaxy catalogue, the structures present within these sim-
ulated volumes need to be identified and subsequently populated
with galaxies.

By comparing the results obtained for a wide range of halo find-
ing algorithms, Knebe et al. (2011) already quantified the errors
introduced during halo identification. This project and its exten-
sions to the related topics of subhalo detection (Onions et al. 2012)
and stream finding (Elahi et al. 2013) are summarized in the review
paper by Knebe et al. (2013b).

Once the set of haloes within a cosmological volume have been
reliably identified, the second step is to populate them with galaxies.
This can be done using the information from a single snapshot by
relating the mass of a halo to the number of galaxies it contains. This
is referred to as Halo Occupation Density or HOD modelling (e.g.
Skibba & Sheth 2009). This, however, treats galaxies within each
snapshot independently. To follow the self-consistent evolution of
galaxies over cosmic time requires information about the growth and
assembly of the haloes that host them. The ruleset that determines
how the galaxies contained within these haloes form and evolve are
known as semi-analytic models (SA models; for a review see Baugh
2006).

SA models rely on the accuracy of both the individual halo cata-
logues themselves as well as the framework that connects the halo
catalogues from different snapshots together. For every object, this
framework forms a tree structure, with many leaves and branches
at early times eventually merging together to form a single trunk
that represents the final galaxy (e.g. Lacey & Cole 1993; Roukema
et al. 1997). The main aim of this paper is to compare and contrast
the tree structures built from a common set of halo catalogues by
10 different tree building algorithms. We will examine the accuracy
of the trees (how often they link unrelated haloes together) and the
smoothness of the tree growth. Both can lead to unrealistic galaxy
growth within an SA model.

The results presented in this paper arise out of the Sussing Merger
Tree workshop, that took place on 2013 July 7. In advance of the
workshop, participants were provided with a set of haloes (described
in Section 3 below) and asked to return a merger tree that linked
the haloes together over cosmic time in a way that best represents
the growth of cosmic structure. We allowed participants to correct
errors in their results that arose out of applying their code to this new
data set (e.g. unusual data format; periodic boundary conditions) but
gave them no feedback in advance of drafting the paper on how their
results compared to those of other participants.

In this paper, we use a single set of halo catalogues from a
cosmological box to test the basic properties of the merger trees
and the mass-growth of haloes over time. During the course of the
study presented here it became clear that tree building algorithms
are often intimately tied to the algorithm used to generate the input
halo catalogue, and so in that sense the comparison is not equally
fair on all codes. While we adhered to this approach in general as
it is the only way to enable an easy comparison between codes, we
nevertheless allowed two codes to modify the halo catalogues (i.e.
CONSISTENT TREES and HBT). We also allowed algorithms to convert
between inclusive and exclusive particles lists (see Section 2, for a
definition) where desired. Future papers will investigate the effect
of changing the halo definition, snapshot spacing, mass resolution
and eventually the effect on SA models.

In what follows, the terminology used throughout the paper will
be specified in Section 2. Section 3 describes the halo data set
that we use, and Section 4 gives an overview of the various codes
that have participated in the comparison. We present results on the

structure of the resultant trees in Section 5 and of their mass-growth
in Section 6. Finally, we summarize our results in Section 7.

2 T E R M I N O L O G Y

To avoid confusion, it is important that different researchers work-
ing on merger trees speak the same language. We define here the
terminology used in this paper and would encourage others to adopt
the same definitions.

(i) A halo is a dark-matter condensation as returned by a halo
finder (in our case AHF). For the purposes of other definitions below,
we assume that the IDs of the particles attributed to each halo by
the halo finder are known.

(ii) Haloes may be spatially nested: in that case the outer halo
is the main halo and the other haloes are subhaloes. Note that
the assignment of main haloes and subhaloes is a function of the
halo finder and one can envisage unusual geometries where this
allocation is not obvious; nevertheless, the picture of subhaloes
orbiting within larger ones ties in with our view of cosmic structure
and is central to many SA models.

(iii) If particles are allowed to be members of only one halo, (i.e.
particles in subhaloes are not included in the particle ID list of the
main halo, and particles in overlapping haloes are assigned to just
one of the two), then the haloes are said to be exclusive; otherwise
they are inclusive (AHF falls into this latter category).

(iv) Haloes are defined at distinct snapshots. Snapshots corre-
spond to particular values of cosmic time and contain the particle
IDs, mass, location and velocity for each dark-matter particle in the
simulation.

(v) For two snapshots at different times, we refer to the older one
(i.e. higher redshift) as A and the younger one (i.e. lower redshift)
as B.

(vi) A graph is a set of ordered halo pairs, (HA, HB), where HA is
older than HB. It is the purpose of the merger-tree codes to produce
a graph that best represents the growth of structure over cosmic
time. HA and HB are usually taken from adjacent snapshots, but this
is not a requirement as there are occasions where haloes lose their
identity and then reappear at a later time.

(vii) Recursively, HA itself and progenitors of HA are progeni-
tors of HB. Where it is necessary to distinguish HA from earlier
progenitors, we will use the term direct progenitor.

(viii) Recursively, HB itself and descendants of HB are descen-
dants of HA. Where it is necessary to distinguish HB from later
descendants, we will use the term direct descendant.

(ix) In this paper, we are primarily concerned with merger trees
for which there is precisely one direct descendant for every halo.
Note that it is possible for haloes near the minimum mass limit to
have zero descendants: we omit such haloes from our analysis.

(x) In the case that there are multiple direct progenitors, we re-
quire that precisely one of these be labelled the main progenitor –
this will usually be the most massive, but other choices are permit-
ted.

(xi) The main branch of a halo is a complete list of main progen-
itors tracing back along its cosmic history.1

Over the course of writing this paper it became clear that there has
been confusion in the past between what we call graphs and merger

1 We note that, for main haloes rooted at z = 0, this main branch might more
appropriately be called a trunk, but it seems unnecessary to introduce a new
term for this specific purpose.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

152 C. Srisawat et al.

Figure 1. Snapshot ID versus time (lower x-axis, normalized to the present
age of the Universe) and redshift (upper x-axis).

trees. Both are interesting in different contexts. We limit ourselves
here to an investigation of merger trees which are the more relevant
as an input to SA models.

3 IN P U T H A L O C ATA L O G U E S

The halo catalogues used for this paper are extracted from 62 snap-
shots of a cosmological dark matter only simulation undertaken
using the GADGET-3 N-body code (Springel 2005) with initial con-
ditions drawn from the Wilkinson Microwave Anisotropy Probe 7
cosmology (Komatsu et al. 2011). We use 2703 particles in a box
of comoving width 62.5 h−1 Mpc, with a dark-matter particle mass
of 9.31 × 108 h−1 M�. The snapshots are labelled 0, 1, 2, . . . , 61
from redshift 50 to redshift 0, as indicated in Fig. 1.

The main halo finder used in this paper is AHF2 (Gill, Knebe &
Gibson 2004; Knollmann & Knebe 2009). It locates local overden-
sities in an adaptively smoothed density field as prospective halo
centres. For each of these density peaks, the gravitationally bound
particles are determined. Only peaks with at least 20 bound particles
are considered as haloes and retained for further analysis. The halo
mass M200 is

M200 = 200ρc(z)
4π

3
R3

200, (1)

where ρc(z) is the critical density of the Universe as a function of
redshift z and R200 is the radius enclosing a mean density that equals
200 times the critical density.

AHF generates inclusive data sets (i.e. particles in subhaloes are
also included in the main halo). As an input to the tree-building
codes, we provided the list of particle IDs associated with each
halo, alongside information about the (kinetic plus potential) energy,
position and velocity of each particle; we further made available the
full halo catalogue containing, besides the usual mass, position and
bulk velocity, an abundance of additional information (e.g. energies,
centre offsets, shapes, etc.).

The participants were asked to run their merger-tree builders on
the supplied data and return, for each halo, a list of progenitor haloes

2 The Amiga Halo Finder package is publicly available for download from
http://popia.ft.uam.es/AHF.

and (unless the halo was newly created) the ID of a single main
progenitor. For the purpose of comparing merger-tree algorithms,
we restricted participants to use only the information described
above and did not give them access to the raw N-body data. However,
they were allowed to alter the original halo catalogues by adding
extra ‘fake’ haloes and removing some ‘unreliable’ haloes where
they felt that was appropriate.

4 C O D E D E S C R I P T I O N S

In this section, we briefly describe, in alphabetical order, the partic-
ipating merger-tree codes. Furthermore, details of algorithms can
be found in the accompanying references.

The participants were asked to build trees starting from our in-
put halo catalogues described in Section 3. One of the features of
a merger tree, as we define it, is that while an object can have
multiple progenitors, only one descendant is allowed. But many of
the algorithms tested did not, in the first instance, produce a tree.
Instead they commonly built graphs that allowed multiple descen-
dants of a single progenitor halo. To allow consistency and ensure a
fair comparison, we required each author to modify their algorithm
to return a tree. Nevertheless, the central process of linking haloes
together between snapshots remains and exploring the various ways
of achieving this is the main purpose of this paper.

We note that some of the participating codes required modifica-
tion in order to allow them to take as input the AHF halo catalogues
that we used for this comparison project. To facilitate analysis of
the returned merger trees, we have defined a common, minimal
data output format (described in the Appendix), and this has also
required minor modifications to some of them.

4.1 Tree similarity

As a lot of methodology is similar across the various codes used
here, we try to capture the main features and requirements in Fig. 2
and Table 1. Note that only a single code does not use particle
IDs to link haloes between snapshots: that potentially makes it
more widely applicable to legacy data but leads to problems with
misidentification of haloes, as will be seen later in Section 5 below.

Many tree-codes make use of a merit function

M(HA, HB) = f (NA, NB, NA∩B), (2)

Figure 2. A summary of the main features and requirements of the different
merger-tree algorithms. For details see the individual descriptions in the text.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 153

Table 1. A summary of the features and requirements of merger-tree algorithms (for details see individual descriptions in the text). Columns:
(i) code name; (ii) particle properties used to produce the merger trees; (iii) AHF halo properties used to produce the merger trees (M200-mass,
r-position, v-velocity, Vmax-maximum rotation speed of the halo); (iv) the merit function used to estimate descendants; (v) the merit function
used to estimate the main progenitor; (vi) the number of consecutive snapshots used to determine descendants/progenitors at each snapshot.
M1 = N2

A∩B/(NANB), M2 = NA∩B/NB , M3 = NA∩B , M4 = ∑
j R−2/3

(A∩B)j
, M5 = NA∩B/NB for most bound particles only.

Particle properties used AHF halo properties used D. Merit function P. Merit function #Snapshots used

CONSISTENT TREESa PID M200, r , v, Vmax M3 Trajectory Est. 4b

D-TREES PID, binding energy – M5 M5 5b

HBTa PID, position, velocity – – – 2
JMERGE – M200, r , v, Vmax Trajectory Est. Trajectory Est. 2
LHALOTREE PID, binding energyc – M4 Most massive halo 3
MERGERTREEd PID – M1 M1 2
SUBLINK PID, binding energyc – M4 Most massive history 3
TREEMAKER PID – M1 M1 2
VELOCIRAPTOR PID – M1 M1 2
YSAMTM PID – M2 M2 2

aModify catalogue; busers specify but these numbers are used for this comparison; cuse the distance from halo’s centre for this comparison;
duses the inclusive particle convention.

where NA and NB are the number of particles in haloes HA and HB,
respectively, and NA∩B is the number of particles that are in both HA

and HB, or

M(HA, HB) = f (RA∩B), (3)

where RA∩B is the ranking (decreasing binding mass or increasing
halocentric radius) of particles that are in both HA and HB. Such a
function aims at identifying the most likely progenitor/descendant
of a given halo. A few of them use additional information such as,
for instance, the binding energy of the particles, properties of the
haloes or information about the snapshot times.

4.2 CONSISTENT TREES (Mao & Behroozi)

The CONSISTENT TREES algorithm (Behroozi et al. 2013) first matches
haloes between snapshots by identifying descendant haloes as those
that have the maximum number of particles from a given progenitor
halo. It then attempts to clean up this initial guess by simulating
the gravitational bulk motion of the set of haloes given their known
positions, velocities and mass profiles as returned by the halo finder.
From haloes in any given simulation snapshot, the expected posi-
tions and velocities of haloes at an earlier snapshot may be cal-
culated. In some cases, obvious inconsistencies arise between the
predicted and actual halo properties, such as missed satellite haloes
(e.g. satellite haloes which pass too close to the centre of a larger
halo to be detected) and spurious mass changes (e.g. satellite haloes
which suddenly increase in mass due to temporary missassignment
of particles from the central halo). These defects are repaired by
substituting predicted halo properties instead of the properties re-
turned by the halo finder. If a halo has no descendant, a merger is
assumed to have occurred with the halo exerting the strongest tidal
field across it, unless no such suitable halo exists in which case the
halo is presumed to have been spurious and this branch is pruned
from the merger tree. This process helps to ensure accurate mass
accretion histories and merger rates for satellite and central haloes;
full details of the algorithm as well as tests of the approach may be
found in Behroozi et al. (2013).

4.3 D-TREES (Helly)

The D-TREES algorithm (Jiang et al., in preparation) is designed to
work with the SUBFIND group finder, which (like AHF) can occasion-

ally fail to detect haloes or subhaloes for one or more snapshots.
It therefore allows for the possibility that descendants may be iden-
tified more than one snapshot later. Descendants are identified by
following the most bound ‘core’ of each group – i.e. those particles
with the lowest total energy.

To find the descendant at snapshot B, of a group which exists at
an earlier snapshot, A, the following method is used. For each group
containing Np particles the Nlink most bound particles are identified,
where Nlink is given by

Nlink = min(Nlinkmax, max(ftraceNp, Nlinkmin)) (4)

with Nlinkmin = 10, Nlinkmax = 100 and ftrace = 0.1. Descendant
candidates are those groups at snapshot B that received at least one
of the Nlink most bound particles from the earlier group. If any of
the descendant candidates received a larger fraction of their Nlink

most bound particles from the progenitor group than from any other
group, then the descendant is chosen from these candidates only and
the group at snapshot A will be designated the main progenitor of
the chosen descendant; otherwise all candidates are considered. The
descendant of the group at snapshot A is taken to be the remaining
candidate which received the largest fraction of the Nlink most bound
particles of the progenitor group. For each group at snapshot B, this
method identifies zero or more progenitors of which at most one
may be a main progenitor. Note that it is not guaranteed that a main
progenitor will be found for every group.

If a group is not found to be the main progenitor of its descendant,
this may indicate that the group has merged with another group and
no longer exists in the simulation. However, it is also possible that
the group finder has simply failed to identify the object at the later
snapshot. In order to distinguish between these cases it is necessary
to search multiple snapshots.

For each snapshot A in the simulation, descendants are identified
at later snapshots in the range A + 1 to A + Nstep using the method
described above. For each group at snapshot A this gives up to Nstep

possible descendants. One of these descendants is picked for use in
the merger trees as follows: if the group at snapshot A is the main
progenitor of one or more of the descendants, the earliest of these
descendants that does not have a main progenitor at a snapshot
later than A is chosen. If no such descendant exists, the earliest
descendant found is chosen irrespective of main progenitor status.

This results in the identification of a single descendant for each
group, which may be up to Nstep snapshots later. Each group may

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

154 C. Srisawat et al.

also have up to one main progenitor which may be up to Nstep

snapshots earlier.

4.4 HBT (Han, Jing)

The Hierarchical Bound Tracing (HBT) algorithm (Han et al. 2012)
is a tracking halo finder in the sense that it uses information from
earlier snapshots to help derive the latest halo catalogue. As such
it naturally builds a merger tree. Starting from high redshift, main
haloes are identified as they form. The particles contained within
these haloes are then followed explicitly through subsequent snap-
shots, generating a merger tree down to main halo level at the first
stage. To extend the merger tree down to subhalo level, HBT contin-
ues the tracing of merged branches, identifying the set of self-bound
particles that remain for every progenitor halo. These self-bound
remnants are defined as descendant haloes of their progenitors. With
this kind of tracking, each halo has at most one progenitor, which
defines its main branch. The main branch extends until the number
of particles contained in the bound halo remnant drops below 20
particles. When this occurs a final tracking step is undertaken to
determine which halo it has fallen into, adding minor branches to
the tree.

The major challenge in this method is to robustly track haloes
over long periods, and HBT has been specifically tuned to achieve
this. In addition, the merging hierarchy among progenitor haloes
is utilized to efficiently allow satellite–satellite mergers or satellite
accretion inside satellite systems.

Note that HBT is not designed to be a general purpose tree builder
for external halo catalogues. To generate the trees used in this paper,
HBT was run using only the main haloes from the supplied catalogue
as described in Section 3 as input. It then outputs its own list of
haloes and calculates the relevant properties for them, as well as
returning the merger tree built on top of these haloes.

HBT outputs exclusive haloes. In order to give a mass which
matches that of AHF haloes as closely as possible, for each halo,
we first calculate an ‘exclusive’ mass according to equation (1)
using only particles from the halo itself. Then, we add to each halo
the exclusive mass of all its subhaloes, to give an ‘inclusive’ mass,
which we use throughout this paper.

4.5 JMERGE (Onions)

The JMERGE algorithm constructs a merger tree purely from aggre-
gate properties (the position, centre-of-mass velocity and mass) of
the haloes identified by a halo finder (i.e. it does not require the
individual particle positions or particle IDs). It compares halo cata-
logues from two snapshots separated by a known time interval. For
the two sets of haloes at times A and B, a new position is calcu-
lated for the centre of each halo by moving the A haloes forward in
time by half the timestep, and the B haloes backwards by half the
timestep assuming that they are moving at constant velocities. Then,
starting from the most massive halo and working towards smaller
masses, for each halo in A, a best match on position is found to a
halo in B, together with constraints on the allowed change in mass
and maximum circular velocity. Mass is allowed to shrink by a
factor of up to 0.7, and to grow by a factor of up to 4. The search
distance is limited to twice the radius at which the enclosed density
is 200 times the background density plus four times the distance
the halo has moved during the timestep. At this stage, each halo in
B can only be claimed once. This process attempts to trace haloes
growing over time.

For those haloes that do not find an unclaimed descendant in B,
two other processes are implemented. First, mergers are accounted
for by finding so far unmatched haloes at time A that can accrete on
to B targets already accounted for, whilst still limiting the total mass
of the direct progenitors of each descendant to less than 1/0.7 times
its mass. Secondly, haloes that cannot find a suitable match are
deemed to be numerical artefacts and are pruned from the tree.

4.6 L-HALOTREE (Dolag)

L-HALOTREE was the first merger-tree algorithm to construct trees
based on subhaloes instead of main haloes. The L-HALOTREE algo-
rithm is described in the supplementary information of Springel
et al. (2005) and the reader is referred there for further details. In
short, to determine the appropriate descendant, the unique IDs that
label each particle are tracked between outputs. For a given halo,
the algorithm finds all haloes in the subsequent output that contain
some of its particles. These are then counted in a weighted fashion,
giving higher weight to particles that are more tightly bound in the
halo under consideration, as listed in Table 1, and the one with the
highest count is selected as the descendant. In this way, preference
is given to tracking the fate of the inner parts of a structure, which
may survive for a long time upon infall into a bigger halo, even
though much of the mass in the outer parts can be quickly stripped.

To allow for the possibility that haloes may temporarily disappear
for one snapshot, the process is repeated for Snapshot n to Snapshot
n + 2. If either there is a descendant found in Snapshot n + 2 but
none found in Snapshot n + 1, or, if the descendant in Snapshot
n + 1 has several direct progenitors and the descendant in Snapshot
n + 2 has only one, then a link is made that skips the intervening
snapshot.

4.7 MERGERTREE (Knebe)

The MERGERTREE routine forms part of the publicly available Amiga
halo finder (AHF) package. It is a simple particle correlator: it takes
two particle ID lists (ideally coming from an AHF analysis) and
identifies for each object in list B those objects in list A (at the pre-
vious snapshot) with which there N or more particles in common
(N = 10 for this comparison). Despite its name, therefore, it pro-
duces a graph mapping the connections between objects rather than
a tree, as each halo can have multiple descendants.

MERGERTREE also identifies a unique main progenitor for each
object in list B as found in list A. It achieves this by maximizing
a merit function (as shown in Table 1) This has proven extremely
successful (Klimentowski et al. 2010; Libeskind et al. 2011; Knebe
et al. 2013a). The code can hence not only be used to trace a
particular object backwards in time (or forward, depending on the
temporal ordering of files A and B), but also to cross-correlate
different simulations (e.g. different cosmological models run with
the same phases for the initial conditions).

To create an actual tree, we need to ensure that each halo has a
unique descendant. This is guaranteed by running MERGERTREE in a
novel mode that applies the same merit function in both directions
when correlating two files. In practice this links haloes that share
the largest fraction of particles between the two snapshots as well as
forcing a choice between multiple possible descendants (of which
now only the one maximizing the merit function in the direction
A �→B is kept). The use of a merit function also eliminates any need
for all the particles in the input halo catalogues to only belong to a
single object: MAiBj

automatically takes care of particles that have
been assigned to multiple objects.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 155

4.8 SUBLINK (Rodriguez-Gomez)

SUBLINK (Rodriguez-Gomez et al., in preparation) constructs merger
trees at the subhalo level. A unique descendant is assigned to each
subhalo in three steps. First, descendant candidates are identified
for each subhalo as those subhaloes in the following snapshot that
have common particles with the subhalo in question. Secondly, each
of the descendant candidates is given a merit function specified in
Table 1. Thirdly, the unique descendant of the subhalo in question
is the descendant candidate with the highest merit function.

Sometimes the halo finder does not detect a small subhalo that
is passing through a larger structure, because the density contrast
is not high enough. SUBLINK deals with this issue in the following
way. For each subhalo from snapshot Sn, a ‘skipped descendant’ is
identified at Sn + 2, which is then compared to the ‘descendant of the
descendant’ at the same snapshot. If the two possible descendants at
Sn + 2 are not the same object, we keep the one obtained by skipping
a snapshot since, by definition, it has the largest score at Sn + 2.

Once all descendant connections have been made, the main pro-
genitor of each subhalo is defined as the one with the ‘most massive
history’ behind it, following De Lucia & Blaizot (2007). This in-
formation is rearranged into fully independent merger trees.

4.9 TREEMAKER (Tweed)

The TREEMAKER algorithm was developed for the SA model Galaxies
in Cosmological Simulations (GalICS) (Hatton et al. 2003). It was
first used on Friends-of-Friends haloes (Davis et al. 1985), and later
applied to main haloes and subhaloes extracted from a cosmological
simulation with the AdaptaHOP group finder (Aubert, Pichon &
Colombi 2004; Tweed et al. 2009). The code associates haloes
from two consecutive time steps, listing all progenitors (including
particles accreted from the background) and descendants (multiple
descendants being allowed even if particles lost to the background
are ignored). Here ‘background’ refers to particles not in any halo
at the current time. This first step is completed by using the particle
IDs as tracers to identify haloes. Under our scheme a particle can
only belong to one single halo at a given step, meaning a particle
in a subhalo belongs only to that subhalo and not to any enclosing
halo.

In order to create a ‘usable’ merger tree, a simplification stage
is required. Exactly one descendant per halo is selected and the
list of progenitors updated to reflect this selection. Selecting this
unique descendant requires the use of a merit function. The first
versions of TREEMAKER used a shared merit function. For this study,
we tested various modifications of this selection, but all gave similar
results. We therefore include in this paper only the normalized merit
function M1 as shown in Table 1.

4.10 VELOCIRAPTOR (Elahi)

The halo merger-tree algorithm used in VELOCIRAPTOR is based on
a particle correlator: that is the algorithm compares two (or more)
exclusive particle ID lists and produces a catalogue of matches
for each object in each list. Specifically, for each object i in cata-
logue A, the algorithm finds all objects j in catalogue B that share
particles, and calculates the strength of each connection using the
merit function M1 as shown in Table 1. The search for connections
is done in both directions. Any connection with a merit function
within Poisson fluctuations, MAiBj

≤ 1/(NAi
NBj

), is ignored. The
connection that maximizes M for A → B is deemed the unique
descendant (note that the original code returned a graph that did not

enforce this requirement of uniqueness). This approach is used as
particle ID lists produced by VELOCIRAPTOR contain not only particles
belonging to bound (sub)haloes but also those in physically diffuse
tidal debris. Consequently, tracking object centres or weighting par-
ticles by a measure of how bound they are is meaningless. Note that
tidal debris candidates, due to their physically diffuse nature, can
be artificially fragmented into several VELOCIRAPTOR groups. For ex-
ample, a single bound (sub)halo identified at time A is found to be
the progenitor of several tidal debris fragments at time B. Matching
B → A, the fragments identify the (sub)halo as the primary progen-
itor; however, the (sub)halo will identify the largest tidal fragment
as its primary descendant. For the purposes of this paper, the other
fragments are ignored. However, in the general merger graph pro-
duced by VELOCIRAPTOR, these fragments are flagged as secondary
descendants if fragment shares ≥5 per cent of particles with the
primary progenitor.

4.11 YSAMTM (Jung, Lee & Yi)

The tree-making algorithm YSAMTM (Jung et al., in preparation) was
developed to build dark-matter halo merger trees for the SA model
ySAM (Lee & Yi 2013). It uses the particle information from two
snapshot files or the particle IDs and locations from a pre-calculated
halo catalogue. First the ‘shared mass’, the mass contribution of all
progenitor haloes to each descendant halo, is calculated. At this
stage, particles are matched between haloes in the two snapshots
by using the particle IDs. Individual particles are only included
in a single halo or subhalo and are not listed as members of the
host halo of the subhalo. Secondly, in order to convert our graph
into an actual tree that could be used by SA models, we define
a unique descendant halo of each progenitor halo by determining
which descendant halo has the most shared mass among all de-
scendants of the progenitor halo, unless there exists a smaller halo
which receives a larger fraction of its mass from the same progen-
itor. In this case, we determine that the smaller one is the most
likely descendant halo of the progenitor even if its shared mass is
not the largest amongst all the descendants. This avoids defining the
smaller descendant halo as a newly formed halo when it contains
many particles that were members of an existing halo in the previ-
ous snapshot. This process creates a true tree where one descendant
halo can have multiple progenitor haloes, while each progenitor halo
has a unique descendant halo. Among those progenitors, the main
progenitor is determined by maximizing the merit function M2 in
Table 1.

5 T R E E ST RU C T U R E

In this section, we look at the structure/geometry of trees. This
includes a comparison of measurable quantities like the tree-length
along the main branch, the tree-branching at every step and the
general consistency of the tree (i.e. possible misidentification of
descendants).

5.1 Length of main branches

The most basic requirement of a tree-building code is to trace haloes
back in time. The length of the main branch gives a measure of
how long single haloes can be followed through the complicated
merger history of structure formation. Fig. 3 shows the number, N, of
z = 0 haloes that have main branches extending for a given number
of snapshots, l, for all haloes within three different mass-ranges:
haloes with M200 < 1011 h−1M� (less than ∼100 particles) are

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

156 C. Srisawat et al.

Figure 3. The length of the main branch for haloes identified at z = 0
(Snapshot 61). The ordinate is l = 61 − S, where S is the snapshot number
at the high-redshift end of the main branch. The upper, middle and lower
panels show the halo mass ranges at z = 0, as indicated in the panel, which
correspond to roughly <100, 200–500 and >1000 particles, respectively.

shown in the top panel, 2 × 1011 h−1M� < M200 < 5 × 1011 h−1M�
in the middle panel and M200 > 1012 h−1M� (more than ∼1000
particles) in the bottom panel.

Large haloes (bottom panel of Fig. 3) tend to have long main
branches with l = 30–50, which is in agreement with the picture of
bottom-up structure formation, where larger objects form through
repeated mergers of smaller ones.

As one moves to smaller haloes, the proportion of short branches
increases. For M200 < 1011 h−1 M�, the number of main branches
per length is roughly constant from l = 0 until about l = 30 (corre-
sponding to z ≈ 5) and only drops to zero beyond l ≈ 50 (z ≈ 10).
Thus, even in a hierarchical structure formation scenario, dwarf-
sized haloes that survive to the current day have a wide variety of
formation times.

One oddity in Fig. 3 is that most of the tree codes find a few large
haloes with very short main branches which is in contradiction to the
common picture of structure formation. Furthermore, investigation
of these branches show that they are either truncated due to a non-
identification by the halo finder, or are due to an error in the halo
assignment of the tree building codes.

One such example is pictured in Fig. 4 which shows two similarly
sized haloes merging almost head-on. The red and blue circles show
the two haloes at z = 0 (right-hand column) and then traced back
in time over several snapshots (successive columns to the left –
note that we have chosen to omit Snapshot 58 as it added little to
the plot). The AHF halo finder (and other halo finders behave in a
similar manner) assigns most of the mass in overlapping objects to a
single object, treating the other as substructure. Unfortunately, this
assignment can change between snapshots so that haloes centred
on the same clump of highly bound particles can fluctuate wildly in
size. Different tree codes handle this in different ways, illustrated
in the different rows of Fig. 4.

(i) MERGERTREE fails to find a match for the smaller of the two
haloes at Snapshot 60 and does not seek a match at earlier times.
This halo therefore has no links in its merger tree and appears to be
created intact in the final snapshot. The other merit function codes
that use just two snapshots (TREEMAKER, VELOCIRAPTOR and YSAMTM)
behave in the same manner, as, in this case, does JMERGE.

(ii) LHALOTREE does something similar, but due to its use of
weighted function, it matches the smaller of the two haloes at
z = 0 to the large one from the previous snapshot. While LHALOTREE

can cross-match haloes by skipping a snapshot, that is not applied
here as a descendent halo exists.

(iii) D-TREES does the same as LHALOTREE on Snapshot 60, but
also manages to link together the larger of the two haloes between
Snapshots 61 and 59. This results in a fluctuating mass for the both
haloes, (low-high-low for red, high-low-high for blue).

(iv) SUBLINK also manages to cross-match the larger of the haloes
between Snapshots 61 and 59 but chooses a different association for
the halo in Snapshot 60, thus avoiding the large mass fluctuation. It
links the smaller of the two haloes in Snapshot 61 directly to that in
Snapshot 59, skipping over the intermediate snapshot.

(v) CONSISTENT TREES goes one step further and introduces a fake
halo in Snapshot 60 to avoid a link in the merger tree that extends
over more than one snapshot.

(vi) Finally, HBT redefines both haloes and outputs a smoother
variation of mass over time.

From these descriptions, it may seem like the above is an ordered
list of improving performance, from top to bottom. However, we
stress that this is true only for this particular merging event and that
different codes cope better in different situations. The purpose here
was more to illustrate the variety of behaviours that are possible.

5.2 Branching ratio

Another interesting statistical quantity is the number of branches
(i.e. the number of direct progenitors) at every node of the merger
tree. This will depend upon the spacing between snapshots, and so
the precise values are not important, but the differences between
algorithms are still of interest.

In Fig. 5, we plot the number of tree nodes with Ndprog direct
progenitors, including all haloes between redshift zero and two.
In this range, the timestep �t between snapshots is roughly constant
with �t ∼ 0.4 Gyr. The most common situation is to have a single
progenitor (i.e. the halo existed in the previous snapshot but no
merging took place), followed by zero progenitors (i.e. the halo
appears for the first time). However, in some cases, and depending
on the tree builder, the number of direct progenitors can exceed 20.

HBT has the lowest branching ratio, perhaps because it allows itself
to modify the halo catalogue to extend the life of subhaloes. JMERGE

also has a low branching number because its non-use of particle IDs
gives it freedom to link together haloes that other algorithms classify
as unrelated. Next come D-TREES and CONSISTENT TREES which both
use information extended over several timesteps to follow haloes
that temporarily disappear (for instance when a subhalo comes close
to the centre of its host halo).

Although multiple direct progenitors are rare, it can be seen that
the choice of tree code can make a significant difference to the
ability to follow substructures and hence to the length of time a
subhalo exists before it is subsumed into the host halo.

5.3 Misidentifications

Most tree-building algorithms link together haloes on the basis of
having particles in common. However, there are some that do not
(in this paper, JMERGE), and there are occasions when this associ-
ation is not clear-cut. So we wish to test how often an obvious
misidentification occurs.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 157

Figure 4. An example of the merger of two haloes where the fluctuation of centring and size causes difficulties for the merger-tree algorithms. The red and
blue circles show two haloes selected at z = 0 (right-hand column) and then traced back in time over several snapshots (successive columns to the left – note
that we have chosen to omit Snapshot 58 as it added little to the plot). The missing algorithms all return the same results as MERGERTREE, shown in the top row.
See the main text for a commentary.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

158 C. Srisawat et al.

Figure 5. Histograms of the number of haloes with Ndprog direct progeni-
tors, using all haloes from z = 0 to z = 2.

Figure 6. Histograms of the displacement statistic, �r, for main haloes and
their main progenitor for which both of them have M200 > 1012 h−1 M�.
The vertical lines show the 90th and 99th percentiles for MERGERTREE (but
are approximately the same for all algorithms except HBT).

One way of doing this is to quantify how far haloes are displaced
from their expected locations in moving from one snapshot to the
next. This is hard to predict for sub-haloes that may be moving
around inside a larger object and so we restrict our attention to main
haloes only. To measure this deviation, we use the statistic

�r = |rB − rA − 0.5(vA + vB) (tB − tA)|
0.5 (R200A + R200B + |vA + vB |(tB − tA))

(5)

which stays small as long as there is approximately uniform accel-
eration and no error in the halo linking. Here t is cosmic time, r
and v are the haloes’ positions and velocities, and R200 the radius
that encloses an overdensity of 200 times the critical density. The
subscripts A and B refer to two linked haloes along the main branch
of any tree.

Fig. 6 shows a histogram of �r for each algorithm, for all main
haloes and their corresponding main progenitors. Most algorithms
agree on the bulk of the distribution, and this likely represents the
true behaviour for the AHF haloes considered here, with deviations

Figure 7. An example of a situation where the halo finder assigns main
haloes differently between snapshots. The red haloes in each row show the
main branch of the largest halo on the right-hand side.

from �r = 0 being caused by curved trajectories and/or merging of
subhaloes. The difference in HBT’s result from the others is partly
due to different tree-links but also because the HBT halo catalogue
has an intrinsically lower �r.

JMERGE occasionally shows much larger deviations, suggesting
that it does have a tendency to link together unassociated haloes.
CONSISTENT TREES also shows large outliers in this test and Fig. 7
shows a typical example of how this comes about. Here, we see an
interaction in which the assignment of main halo alternates between
successive snapshots.

(i) Most algorithms (top row) link together the visually correct
group of particles and have small �r, but will have a large fluctuation
in halo mass along the main branch.

(ii) JMERGE requires smooth changes in mass and so it follows the
main halo between Snapshots 58 and 59, leading to a large value of
�r.

(iii) CONSISTENT TREES follows the main branch across all three
snapshots, giving large values of �r for both links. It (correctly)
fails to associate the top-right halo in Snapshot 59 with the central
one in Snapshot 58, so it removes the latter and creates a fake halo
to take its place.

(iv) HBT resolves the situation by creating a halo catalogue in
which the mass evolution is smoother. It also inserts an extra sub-
halo on the bottom right that is not returned by any of the other
algorithms.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 159

Figure 8. The distribution function of the fraction of lost particles, �N for
haloes along the main branch with M200 > 1012 h−1 M�. The vertical lines
show the 90th and 99th percentiles for MERGERTREE (but are approximately
the same for all algorithms). Please note that CONSISTENT TREES cannot be
included in this test because the added haloes specified by the code do not
have particle information.

5.4 The loss of particles during halo growth

During mergers (and, indeed, during quiescent evolution) particles
can be lost from haloes. As a measure of this, we use the statistic

�N = N∪Ai
− N(∪Ai)∩B

N∪Ai

, (6)

where, for a given halo B, the union runs over all direct progenitors,
Ai. Here N is the number of particles in ∪Ai and B or common to
them both, as indicated by the subscript.

The distribution function of the fraction of lost particles, �N

for haloes along the main branch with M200 > 1012 h−1 M� (cor-
responding to about 1000 particles) is shown in Fig. 8. Note the
extensive wing on this plot that extends to �N = 0.4. For small
values of �N, this is due to changes in the shape of the halo, and
to natural particle orbits that results in material moving out across
the radius (here R200) used to define the edge of the halo. Large
values of �N can occur when haloes reduce their size significantly
between snapshots. An example of this situation has already been
shown in the third row of Fig. 4 which illustrates how the halo finder
alternates between allocating most of the mass to one or other of
two haloes as they fly by one another.

All halo finders roughly agree on the number of haloes for which
�N < 0.4, but there are significant differences for larger values
– these are most probably due to misidentifications. It is perhaps
not surprising that JMERGE has occasional very poor matches, given
that it does not use particle IDs, but rare examples of apparently
erroneous links are found in many other algorithms too.

6 MASS G ROWTH

In this section, we look at the mass evolution of haloes, primarily
along their main branches, which is a key input for most SA models.
While main haloes are expected to grow in mass through accretion
and mergers, sub-haloes can lose mass through tidal stripping.

Consider first Fig. 9 which shows the mass evolution along the
main branch for the red and blue haloes illustrated in Fig. 4. The
large mass fluctuations seen on the right-hand side of this plot

Figure 9. The mass history of the blue halo (top) and the red halo (bottom)
in Fig. 4 specified by each merger-tree code. Note that many of the lines lie
on top of one another – we do not attempt to describe that in detail here as
the purpose of the plot is simply to illustrate the variety of mass-accretion
histories that are possible for a single halo. The HBT haloes end up with a
different final mass at z = 0 because they produce a distinct halo catalogue.

correspond to the right-most panels in Fig. 4 and illustrate how
poorly constrained the mass evolution is during that merger. The
strong variation between the results returned by different algorithms
suggests that much of this mass variation is unphysical, and most
SA models would struggle to cope with this kind of fluctuating mass
behaviour.

6.1 Mass growth along the halo main branch

The logarithmic growth rate of main branch haloes, d log M/d log t
is approximated discretely by

d log M

d log t
≈ αM(A, B) = (tB + tA)(MB − MA)

(tB − tA)(MB + MA)
, (7)

where MA and MB are the masses of a halo and its descendent at
times tA and tB, respectively. The distribution function of αM is
shown in Fig. 10 for every pair of main-branch haloes for which the
mass of each exceeds 1012 h−1M� (corresponding to about 1000
particles).

As demonstrated in Fig. 10, most of the time haloes are growing
but there is a significant proportion of the time (about 30 per cent)
during which mass-loss occurs. Such a large fraction is unlikely to be
due to stripping (as this result is restricted to high-mass main-branch
haloes) but some apparent mass-loss can occur due to changes in
the shape of haloes during their evolution, especially following a
major merger.

Strong mass-loss, however, is unphysical and is due to failures
in the halo-finding and linking process, as illustrated in Figs 4, 7
and 9. The halo evolution seen in the right-most columns of Fig. 4
correspond to the wings in Fig. 10.

6.2 Mass fluctuations of subhalo main branches

Abrupt fluctuations up and down in mass can be quantified with a
statistic

ξM (k) = arctan αM (k, k + 1) − arctan αM (k − 1, k), (8)

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

160 C. Srisawat et al.

Figure 10. Distribution function of logarithmic mass growth, αM along
halo main branches. We have included all pairs of haloes for which both the
masses exceed 1012 h−1 M�.

Figure 11. Mass fluctuations, ξM, for sets of three consecutive haloes along
a main branch for which the mass of each exceeds 1012 h−1 M�. The vertical
lines show the two-sided 90th and 99th percentiles for MERGERTREE (but are
approximately the same for all algorithms except HBT). Note that the apparent
discrepancy of HBT is because, for the purposes of this paper, they construct
masses only from the supplied AHF halo catalogues. We have checked that,
on applying HBT to the full simulation data, this discrepancy goes away.

where αM is as defined in equation (7) and k − 1, k and k + 1
represent successive timesteps. This measures the change in the
slope of the mass accretion rate between two consecutive steps and
thus ranges from −π to π. The main purpose of this statistic is to
detect temporary mass fluctuations that occur either as a result of
the natural growth process, or because of halo misidentification.

Large, negative values of ξM correspond to sharp temporary peaks
in mass, and positive values to dips in mass. Somewhat surprisingly
|ξM| exceeds π/3 10 per cent of the time, and 2π/3 1 per cent of the
time. Thus, strong mass variations are relatively common. However,
the presence of the strong mass variations seems to be a limitation of
the halo finding algorithm rather than the merger-tree algorithms as
evidenced by the great similarity between all merger-tree algorithms
except HBT in Fig. 11. Note that the apparent discrepancy of HBT is

because, for the purposes of this paper, they construct masses only
from the supplied AHF halo catalogues. We have checked that, on
applying HBT to the full simulation data, this discrepancy goes away.

7 D I SCUSSI ON

This paper summarizes the results of a merger tree comparison
project. The comparison was completed, and the paper drafted, in
advance of the Sussing Merger Trees Workshop in Midhurst, Sussex
in 2013 July. The aim of the workshop was not only to compare the
existing status of merger-tree codes, but also to get people thinking
about the desirable features of such codes, in particular for their use
as backbones for SA modelling.

Ten different merger-tree builders contributed to this comparison
project, as listed in Table 1. Although many of these adopted similar
approaches, no two gave identical results.

In order to enable the comparison, we desired that each merger-
tree code should use the same haloes as input. It soon became
apparent that the halo finder can be intimately linked to the tree
builder itself, and so some tree-building codes needed modifica-
tion to enable them to take part. For two of the codes (CONSISTENT

TREES and HBT), we had to allow modification of the halo catalogue.
For this reason, and because the quality of a merger tree depends
in some unspecified way upon the particular scientific use to which
it will be put, we avoid making conclusive statements here about
which algorithms perform better than others.

In Section 2, we defined some terminology that we used through-
out the paper. This proved essential to get everyone talking a com-
mon language (for example, some algorithms did not initially return
merger trees at all, in the sense that every halo did not have a unique
descendent). We encourage other members of the community to use
the same nomenclature.

7.1 Summary of results

Here, we present a brief summary of our findings.

(i) Imperfections in the halo finder can lead to great difficulties
for tree-building algorithms. The particular halo finder that we used
in this project was AHF, but we would expect similar behaviour with
other halo finders and a study of this is presently under way.

(ii) The temporary loss of a halo during the merger of two haloes
(see, e.g. Fig. 4) is disastrous for tree-building algorithms that ex-
amine only two adjacent snapshots. In such cases, it is possible for
haloes containing over 1000 particles to apparently appear out of
nothing between two adjacent snapshots.

(iii) Although they were working with the same input halo cat-
alogue, different algorithms varied in their ability to link together
subhaloes, leading to significantly different branching ratios for the
trees.

(iv) Due to the limitations of the halo finder, codes that do not
use particle IDs to link together haloes can occasionally produce
clear misidentifications (see, e.g. Fig. 7).

(v) Even when haloes persist between snapshots, the halo finder
will sometimes alter which of the two it treats as the main halo, and
this can lead to large oscillations in mass. Different tree builders
handle this in different ways.

(vi) The slope of the logarithmic mass growth curve,
d log M/d log t has a very broad distribution with a peak around
0.5 to 1 but extending beyond the range −10–10. Much of this is
due to genuine fluctuations in mass, although the extremes are due
to failures in the combined halo finder and tree builder.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

Merger Trees Comparison 161

We suggest that any optimal tree-building algorithm will require
a high-quality input halo catalogue that minimizes ‘lost’ haloes and
mass fluctuations, and in addition will possess the following:

(i) the use of particle IDs to match haloes between snapshots;
(ii) the ability to skip at least one, and preferably more, snapshots

in order to recover subhaloes that are temporarily lost by the halo
finder (for instance when they transit the centre of the host halo);

(iii) the ability to cope with (and ideally smooth out) large, tem-
porary fluctuations in halo mass.

7.2 Future work

One of the main purposes of the workshop was to stimulate people
into thinking harder about what makes a good merger tree. As a
result of this, we have initiated projects on the following topics.

(i) Tree stability versus number of snapshots and their optimal
spacing.

(ii) Which is the best halo finder to use for the purposes of tree
building? The answer to this question may well vary from one
tree-building code to another.

(iii) Related to the above, what is the best overdensity criterion
to use when defining haloes?

(iv) How do the results change when applied to a large resimu-
lation of a single halo with lots of nested substructure?

(v) What is the effect of the variation in merger trees on the
resultant SA models?

It is our hope that a consensus will emerge, if not on a unique
halo finding and merger-tree algorithm, at least upon the desirable
features that such algorithms should possess in order to obtain stable
results for the purposes of SA modelling.

AC K N OW L E D G E M E N T S

The Sussing Merger Trees Workshop was supported by the Euro-
pean Commission’s Framework Programme 7, through the Marie
Curie Initial Training Network CosmoComp (PITN-GA-2009-
238356). This also provided fellowship support for AS.

PSB received support from HST Theory Grant HST-AR-
12159.01-A, provided by NASA through a grant from the Space
Telescope Science Institute, which is operated by the Association
of Universities for Research in Astronomy, Incorporated, under
NASA contract NAS5-26555.

KD acknowledges the support by the DFG Cluster of Excellence
‘Origin and Structure of the Universe’.

PJE is supported by the SSimPL programme and the Sydney
Institute for Astronomy (SIfA).

JXH is supported by an STFC Rolling Grant to the Institute for
Computational Cosmology, Durham University.

YPJ is sponsored by NSFC (11121062 11033006) and the
CAS/SAFEA International Partnership Program for Creative Re-
search Teams (KJCX2-YW-T23).

AK is supported by the Spanish Ministerio de Ciencia e
Innovación (MICINN) in Spain through the Ramón y Cajal pro-
gramme as well as the grants AYA 2009-13875-C03-02, CSD2009-
00064, CAM S2009/ESP-1496 (from the ASTROMADRID net-
work) and the Ministerio de Economı́a y Competitividad (MINECO)
through grant AYA2012-31101. He further thanks Curtis Mayfield
for superfly.

VRG was supported in part by Consejo Nacional de Ciencia y
Tecnologı́a (CONACyT) and Fundación México en Harvard.

CS is supported by the Development and Promotion of Science
and Technology Talents Project (DPST), Thailand.

PAT acknowledges support from the Science and Technology
Facilities Council (grant number ST/I000976/1).

SKY acknowledges support from National Research Founda-
tion of Korea (Doyak Program No. 20090078756; SRC Program
No. 2010-0027910) and DRC Grant of Korea Research Council of
Fundamental Science and Technology (FY 2012). Numerical sim-
ulation was performed using the KISTI supercomputer under the
program of KSC-2012-C2-11 and KSC-2012-C3-10. Much of this
manuscript was written during the visit of SKY to the Universities
of Nottingham and Oxford under the general support of the LG
Yon-Am Foundation.

YYM received support from the Weiland Family Stanford Grad-
uate Fellowship.

The authors contributed in the following ways to this paper:
CS, AK, FRP, AS, PAT organized this project. They designed the
comparison, planned and organized the data, performed the analysis
presented and wrote the paper. CS is a PhD student supervised by
PAT. The other authors (as listed in Section 5) provided results
and descriptions of their respective algorithms; they also helped to
proof-read the paper.

R E F E R E N C E S

Aubert D., Pichon C., Colombi S., 2004, MNRAS, 352, 376
Baugh C. M., 2006, Rep. Prog. Phys., 69, 3101
Behroozi P. S., Wechsler R. H., Wu H.-Y., Busha M. T., Klypin A. A.,

Primack J. R., 2013, ApJ, 763, 18
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
Elahi P. J. et al., 2013, MNRAS, 433, 1537
Gill S. P., Knebe A., Gibson B. K., 2004, MNRAS, 351, 399
Han J., Jing Y. P., Wang H., Wang W., 2012, MNRAS, 427, 2437
Hatton S., Devriendt J. E. G., Ninin S., Bouchet F. R., Guiderdoni B., Vibert

D., 2003, MNRAS, 343, 75
Klimentowski J., Łokas E. L., Knebe A., Gottlöber S., Martinez-Vaquero L.

A., Yepes G., Hoffman Y., 2010, MNRAS, 402, 1899
Knebe A. et al., 2011, MNRAS, 415, 2293
Knebe A. et al., 2013a, MNRAS, 428, 2039
Knebe A. et al., 2013b, preprint (arXiv:1304.0585)
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Komatsu E. et al., 2011, ApJS, 192, 18
Kuhlen M., Vogelsberger M., Angulo R., 2012, Phys. Dark Universe, 1, 50
Lacey C., Cole S., 1993, MNRAS, 262, 627
Lee J., Yi S. K., 2013, ApJ, 766, 38
Libeskind N. I., Knebe A., Hoffman Y., Gottlöber S., Yepes G., 2011,

MNRAS, 418, 336
Onions J., Pearce F., Lux H., Muldrew S., Knebe A. S. K., 2012, MNRAS,

429, 2739
Roukema B. F., Quinn P. J., Peterson B. A., Rocca-Volmerange B., 1997,

MNRAS, 292, 835
Skibba R. A., Sheth R. K., 2009, MNRAS, 392, 1080
Springel V., 2005, MNRAS, 364, 1105
Springel V. et al., 2005, Nat, 435, 629
Tweed D., Devriendt J., Blaizot J., Colombi S., Slyz A., 2009, A&A, 506,

647

A P P E N D I X A : T H E T R E E DATA F O R M AT

In order to facilitate comparison and use of merger-tree data, it is
our intention to define in a future paper a common merger-tree data
format. This should make provision for: required minimal data to
define a merger tree; desired fields to ease use; and the ability to
include optional additional data that may prove useful. At the time

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://arxiv.org/abs/1304.0585
http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

162 C. Srisawat et al.

Table A1. The ASCII data format that participants were asked to use to return their merger-tree results.

Information to be returned Notes

Format version =1 – an integer indicating the format version
Description Name of code, version/date of generation; max 1024 characters
N halo Total number of haloes specified in this file
Halo ID1, N1 Halo’s ID and number of direct progenitors
Progenitor1 Halo ID of main progenitor of halo Halo ID1 (where N1 > 0)
Progenitor2 Halo IDs of other progenitors of halo Halo ID1

– –
ProgenitorN1 Halo ID of last progenitor of halo Halo ID1

– –
Halo IDNHalos, NNHalo Halo’s ID and number of direct progenitors
ProgenitorNHalo Halo ID of main progenitor of halo Halo IDNHalo (where NNHalo > 0)
Progenitor2 Halo IDs of other progenitors of halo Halo IDNHalo

– –
ProgenitorNNHalo Halo ID of last progenitor of halo Halo IDNHalo

END String ‘END’ indicating the last line of the output file

of writing (prior to the Sussing Merger Trees Workshop) that format
had not been defined and so we restrict ourselves to outlining here
the minimal data format that was used for the work described in this
paper.

We supplied each participant in the tree comparison project with
a list of haloes, together with their properties (as described in
Section 3) and an inclusive list of particle IDs. Each halo had a
identifier (Halo ID) that was unique across snapshots.

We required participants to return their results in the ASCII format
described in Table A1, where there is an entry for each halo. That
contains enough information for us to be able to reconstruct the
merger trees and, in conjunction with the original halo list, to follow
the growth of haloes over time.

This paper has been typeset from a TEX/LATEX file prepared by the author.

 at U
niversity of Sussex on N

ovem
ber 15, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

