The simulated SZ-richness relation for clusters

Peter Thomas

Combining semi-analytics with simulations

Chris Short, Peter Thomas, 2009, ApJ, 704, 915

The Semi-analytic model

Guo etal 2011 Simultaneously fits the luminosity function, galaxy colours and black hole masses

The feedback model

• Type II supernova feedback:

$$\begin{split} \Delta E_{\rm ejected} &= \frac{1}{2} \epsilon_{\rm halo} v_{\rm SN}^2 \Delta M_* - \frac{1}{2} \epsilon_{\rm disk} v_{\rm vir}^2 \Delta M_* \\ \text{Total energy} & \text{Energy used to reheat} \\ \text{available} & \text{cold disk gas} \end{split}$$

• AGN feedback:

Adopt the Bower et al. (2008) AGN feedback prescription used in GALFORM
Available heating energy is given by:

$$\Delta E_{\rm BH} = \min \begin{cases} 0.1 \Delta M_{\rm BH} c^2 & \text{Radio mode} \\ \epsilon \Delta E_{\rm Edd} & \text{Quasar mode} \end{cases}$$

where $\epsilon = 0.02$ is the disk structure parameter

An improved feedback mechanism Chris Short, Peter Thomas

- Heating dominated by AGN.
- Radio jet/bubble affects only a fraction of particles
- Heating occurs with a duty cycle of 10^8 yr
- Heats out to Rvir
- SNR important for injection of metals
- In clusters most metals are accreted
 so inject within R_{vir}
- Optimal parameters:
 - Heating efficiency = 0.75
 - Radial extent affected = R_{vir}
 - Heating fraction per duty cycle = 0.1

The new Millennium Gas Feedback Simulation

- WMAP-7 cosmology
- Guo et al 2011 semi-analytics
- Improved AGN feedback scheme
- Combined galaxy and ICM catalogues

Yx- M500

Y_{SZ} - M₅₀₀

$$Y_{SZ} - Y_X$$

Planck Y₅₀₀ - N_{200b} relation

Conclusions

- We have presented some results from the Millennium Gas Feedback runs
- Galaxies and the ICM are modelled consistently, with metal and energy injection from ANR and AGN
- We successfully reproduce the X-ray properties of clusters
- Preliminary results on richness show no signs of the M-N vs Y-N discrepancy shown by the initial Planck analysis