The Millennium Gas Simulations

Peter Thomas and the Virgo Consortium

Conclusions

- We show that feedback from SNR and AGN in the L-Galaxies SA model are consistent with the observed properties of the ICM in clusters of galaxies
- We have re-run the Millennium simulation with the WMAP-7cosmology
- We have created merger trees and SA galaxy catalogues using the Guo 2011 version of L-Galaxies (contact me if you want to use them)
- We use the SA galaxies as input to a hydrodynamical simulation:
 - SNR contribute metals (but are inconsequential for entropy generation in massive halos)
 - AGN heat the gas (and can reproduce the entropy and metallicity profiles of clusters)

The old Millennium Gas Simulations

- Millennium Simulation:
 - Tracks CDM only (+SA galaxies)
 - N=2160³ particles
 - L=500 h⁻¹Mpc (comoving)
 - WMAP1 cosmology ($\sigma_8=0.9$)
- Millennium Gas Simulation
 - Same large-scale structure as MS
 - Same volume as MS
 - Same cosmology as MS
 - Fewer (10⁹) particles than MS
 - But also tracks gas (using SPH)

- Three models:
 - GO: gravity only entropy generation through shocks only
 - PC: preheating plus cooling gas is pre-heated to entropy floor of 200 keV cm² at z=4
 - FO: feedback only (no cooling)
 SN+AGN feedback using SA galaxies for selected clusters only
- See papers by:
 - Hartley et al. 2008 (X-ray L-T relation)
 - Stanek et al. 2010 (Scaling relations)
 - Short et al. 2011 (Evolution of scaling rel.)
 - Young et al. 2011 (Baryon fractions)
 - Kay et al. in prep (SZ scaling relations)

Combining semi-analytics with simulations Chris Short, Peter Thomas, 2009, ApJ, 704, 915

The feedback model

• Type II supernova feedback:

$$\Delta E_{\rm ejected} = \frac{1}{2} \epsilon_{\rm halo} v_{\rm SN}^2 \Delta M_* - \frac{1}{2} \epsilon_{\rm disk} v_{\rm vir}^2 \Delta M_*$$

Energy used to reheat cold Total energy available disk gas

• AGN feedback:

• Adopt the Bower et al. (2008) AGN feedback prescription used in GALFORM

• Available heating energy is given by:

$$\Delta E_{
m BH} = \min egin{cases} 0.1 \Delta M_{
m BH} c^2 & ext{Radio mode} \ \epsilon \Delta E_{
m Edd} & ext{Quasar mode} \end{cases}$$

where $\epsilon=0.02$ is the disk structure parameter

Evolution of profiles, Short et al 2010, MNRAS, 408, 2213

Evolution of the baryon fraction - ruling out preheating Owain Young, Peter Thomas, Chris Short, Frazer Pearce, 2011, MNRAS, 413, 691

This figure shows the ratio of the observed to predicted gas fractions within r_{500} .

The feedback (FO) model is consistent with a constant value of unity. However, this is ruled out for the preheating (PC) model with high significance.

This argues strongly against a preheating model for entropy generation in the intracluster medium.

Observational data from Pratt et al. 2010, A&A, 511,85

An improved feedback mechanism Chris Short, Peter Thomas

- Heating dominated by AGN.
- Radio jet/bubble affects only a fraction of particles
- Heating occurs with a duty cycle of 10^8 yr
- SNR important for injection of metals
- In clusters most metals are accreted
 so inject within R_{vir}
- Optimal parameters:
 - Heating efficiency = Bower model
 - Radial extent affected = R_{vir}
 - Heating fraction per duty cycle = 0.01

2010, A&A, 511,85 Observational data from Pratt et al.

The **new** Millennium Gas Simulation

- Simulation details:
 - WMAP-7 cosmology
 - Full Millennium Simulation resolution
 - Guo et al 2011 semi-analytics
 - Improved AGN feedback scheme
 - Metal enrichment from Type II, Type 1a & AGB
 - Without and with radiative cooling

• Status:

- Testing complete in smaller boxes
- DM-only simulation complete
- SA model catalogue constructed
- Gas simulation started
- Data products:
 - SA galaxy catalogue
 - X-ray/SZ cluster catalogues
 - Maps and full datacubes for each cluster

- Science:
 - SZ scaling relations and power spectra
 - ★ relative contribution of core/halo/ filaments
 - ★ evolution
 - \star radio source contamination
 - X-ray properties of galaxy clusters and groups
 - \star in the WMAP-7 cosmology
 - ★ self-consistent stellar population
 - ★entropy profiles that resemble those of NCC clusters
 - ★realistic population of both NCC and CC clusters
 - Metal enrichment of ICM/IGM/WHIM from a self-consistent stellar population and feedback model
 - Holistic models for clusters extending to high redshift: X-ray, optical, SZ, radio

Simulating cool-core systems Owain Young

Conclusions

- We have shown that feedback from SNR and AGN in the L-Galaxies SA model are consistent with the observed properties of the ICM in clusters of galaxies
- We have re-run the Millennium simulation with the WMAP-7cosmology
- We have created merger trees and SA galaxy catalogues using the Guo 2011 version of L-Galaxies (contact me if you want to use them)
- We use the SA galaxies as input to a hydrodynamical simulation:
 - SNR contribute metals (but are inconsequential for entropy generation in massive halos)
 - AGN heat the gas (and can reproduce the entropy and metallicity profiles of clusters)