FASTER PROCESSING OF QUANTUM INFORMATION WITH TRAPPED IONS

NIKOLAY V. VITANOV Quantum Optics and Quantum Information Group Department of Physics, Sofia University, Bulgaria

> European Conference on Trapped Ions September 20, 2010

Content

• Unitaries

- Householder reflection
- discrete Fourier transform

• Highly entangled states

- Dicke states
- cluster states

• Quantum algorithms

• Grover search

• Composite pulses

- Local addressing by nonlocal pulses
- Highly conditional gates

see posters 17 (S. Ivanov) and 47 (B. Torosov)

JOINT WORK WITH

Peter Ivanov (in Mainz) Svetoslav Ivanov (in Dijon) Elica Kyoseva (in Singapore) Boyan Torosov (in Dijon)

Ian Linington

Martin Plenio (Ulm) Ferdinand Schmidt-Kaler (Mainz) Kilian Singer (Mainz)

SPONSORS

EU: RTNetwork EMALI, ITNetwork FastQuast Bulgarian NSF: VU-F-205/2006, VU-I-301/2007, D002-90/2008

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

STANDARD MODEL OF QUANTUM COMPUTER

Single-qubit and two-qubit operations

- Hadamard gate
- phase gate
- two-qubit gate (C-NOT or C-phase)
- A universal quantum computer can be built with these gates only.

Trapped ions: C-NOT gate fidelity > 99% demonstrated in Innsbruck

Problem: Too many gates needed to construct a single mathematical step.

Example 1: about 100 pulses used in NMR demonstration of Grover search with 3 qubits ($\mathcal{N} = 8$ states, 2 + 2 logical steps).

Example 2: about 10^3 pulses needed for factoring the number 15 with ions.

Preskill (1996): $396N^3$ pulses and 5N + 1 qubits needed for N-bit number

Alternative: use the symmetries of the ion system to construct the operations in fewer steps (single-purpose QC, quantum simulator)

ideally: 1 logical step = 1 physical step

Householder Reflection

$\mathbf{M}(\chi;\varphi) = \mathbf{I} + (e^{i\varphi} - 1)|\chi\rangle\langle\chi|$ arbitrary matrix — triangular matrix

Γ	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}		b_{11}	b_{12}	b_{13}	b_{14}	b_{15}
	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	M(2(1)(2))	0	b_{22}	b_{23}	b_{24}	b_{25}
	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	$\mathbf{WI}(\chi_1,\varphi_1)$	0	b_{32}	b_{33}	b_{34}	b_{35}
	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	\rightarrow	0	b_{42}	b_{43}	b_{44}	b_{45}
L	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}		0	b_{52}	b_{53}	b_{54}	b_{55}

イロト イヨト イヨト イ

-

 $\mathbf{M}(\chi;\varphi) = \mathbf{I} + (e^{i\varphi} - 1)|\chi\rangle\langle\chi|$ Hermitean matrix \longrightarrow tridiagonal matrix

$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix}$	$a_{12} \\ a_{22} \\ a_{32} \\ a_{42}$	$a_{13} \\ a_{23} \\ a_{33} \\ a_{43}$	$a_{14} \\ a_{24} \\ a_{34} \\ a_{44}$	$a_{15} \\ a_{25} \\ a_{35} \\ a_{45}$	$\begin{array}{c} \mathbf{M}(\chi;\varphi) \\ \longrightarrow \end{array}$	b_{11} b_{21} 0 0	$b_{12} \\ b_{22} \\ b_{32} \\ 0$	0 b ₂₃ b ₃₃ b ₄₃	$egin{array}{c} 0 \\ 0 \\ b_{34} \\ b_{44} \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ b_{45} \end{array}$	
$a_{41} \\ a_{51}$	$a_{42} \\ a_{52}$	$a_{43} \\ a_{53}$	$a_{44} \\ a_{54}$	$a_{45} \\ a_{55}$,	0 0	0 0	$b_{43} \\ 0$	b_{44} b_{54}	$b_{45} \\ b_{55}$	

Implication: Any Hamiltonian can be reduced to an effective one with nearest-neighbor interactions

・ロト ・日下・ ・ヨト・

$\mathbf{M}(\chi;$	$\varphi) = \mathbf{I} +$	$(e^{i\varphi} -$	$\cdot 1) $	$\chi\rangle\langle\chi $	
unitary	matrix —	\rightarrow diago	nal	matrix	C

Γ	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}		b_{11}	0	0	0	0
	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	Man	0	b_{22}	b_{23}	b_{24}	b_{25}
	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	$\mathbf{WI}(\chi_1,\varphi_1)$	0	b_{32}	b_{33}	b_{34}	b_{35}
	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	\rightarrow	0	b_{42}	b_{43}	b_{44}	b_{45}
L	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}		0	b_{52}	b_{53}	b_{54}	b_{55}

Ξ.

8 / 46

 $\begin{array}{ll} \text{generalized HR} & \mathbf{M}(\chi;\varphi) = \mathbf{I} + (e^{i\varphi} - 1)|\chi\rangle\langle\chi|, \quad \mathbf{M}(\chi;\varphi)^{\dagger} = \mathbf{M}(\chi;\varphi)^{-1} \\ \text{ordinary HR} & \mathbf{M}(\chi) \equiv \mathbf{M}(\chi;\varphi = \pi) = \mathbf{I} - 2|\chi\rangle\langle\chi| = \mathbf{M}(\chi)^{\dagger} = \mathbf{M}(\chi)^{-1} \\ \text{unitary matrix} \longrightarrow \text{diagonal matrix} \\ \text{generalized HR} & \mathbf{M}(\chi_{N-1};\varphi_{N-1})\cdots\mathbf{M}(\chi_2;\varphi_2)\mathbf{M}(\chi_1;\varphi_1)\mathbf{U} = \mathbf{I} \\ \text{ordinary HR} & \mathbf{M}(\chi_{N-1})\cdots\mathbf{M}(\chi_2)\mathbf{M}(\chi_1)\mathbf{U} = \text{diag}\left(e^{i\alpha_1},e^{i\alpha_2},\ldots,e^{i\alpha_N}\right) \end{array}$

Any N-dimensional unitary matrix U can be represented as a product of N-1 Householder reflections:

generalized HR $\mathbf{U} = \mathbf{M}(\chi_1; \varphi_1) \mathbf{M}(\chi_2; \varphi_2) \cdots \mathbf{M}(\chi_{N-1}; \varphi_{N-1})$

ordinary HR $\mathbf{U} = \mathbf{M}(\chi_1)\mathbf{M}(\chi_2)\cdots\mathbf{M}(\chi_{N-1})\operatorname{diag}\left(e^{i\alpha_1}, e^{i\alpha_2}, \dots, e^{i\alpha_N}\right)$

Synthesis of unitaries: General case

Any N-dimensional unitary matrix can be expressed as a succession of

• N-1 generalized HRs $\mathbf{M}(\chi_n; \varphi_n)$ (n = 1, 2, ..., N-1) and a one-dimensional phase gate:

 $\mathbf{U}(N) = \mathbf{M}(\chi_1; \varphi_1) \mathbf{M}(\chi_2; \varphi_2) \cdots \mathbf{M}(\chi_{N-1}; \varphi_{N-1}) \mathbf{F}(0, 0, \dots, 0, \varphi_N)$ $|\chi_1\rangle = (|u_1\rangle - |e_1\rangle)/\text{norm}; \quad \varphi_1 = 2\arg(1 - u_{11}) - \pi \qquad |\chi_2\rangle = \dots$

• N-1 standard HRs $\mathbf{M}(\chi_n)$ (n = 1, 2, ..., N-1) and an N-dimensional phase gate $\mathbf{F}(\phi_1, \phi_2, ..., \phi_N) = \text{diag} \left\{ e^{i\phi_1}, e^{i\phi_2}, ..., e^{i\phi_N} \right\}$: $\mathbf{U}(N) = \mathbf{M}(\chi_1)\mathbf{M}(\chi_2)\cdots\mathbf{M}(\chi_{N-1})\mathbf{F}(\phi_1, \phi_2, ..., \phi_N)$ $|\chi_1\rangle = (|u_1\rangle - e^{i \arg u_{11}}|e_1\rangle)/\text{norm}; \quad |\chi_2\rangle = ...$

 \Longrightarrow any N-dimensional unitary transformation $\mathbf{U}(N)$ can be constructed by at most N steps

Standard methods (Givens SU(2) rotations) use $\mathcal{O}(N^2)$ steps!

M Reck, A Zeilinger, HJ Bernstein, P Bertani, PRL 73, 58 (1994)

LINEAR ION CHAIN: ENERGY LEVELS

Vibrational energy levels in the $|0\rangle$ and $|1\rangle$ manifolds, with red-sideband ($\omega_L = \omega_0 - \nu$), carrier ($\omega_L = \omega_0$), and blue-sideband ($\omega_L = \omega_0 + \nu$) transitions.

LINEAR ION CHAIN: HAMILTONIANS

• Laser tuned near red-sideband resonance: $\omega_L(t) = \omega_0 - \nu - \delta(t)$

$$\mathbf{H}_{I}(t) = \hbar g(t) \sum_{n=1}^{N} \left[a \sigma_{n}^{+} e^{i \int_{t_{i}}^{t} \delta(\tau) d\tau - i\phi_{n}} + a^{\dagger} \sigma_{n}^{-} e^{-i \int_{t_{i}}^{t} \delta(\tau) d\tau + i\phi_{n}} \right]$$

Jaynes-Cummings model

conserves the **SUM** of ionic excitations and phonons $|0\rangle_{ion}|n\rangle_{phonon} \xrightarrow{\text{red}} |1\rangle_{ion}|n-1\rangle_{phonon}$

 $\sigma_n^+ = |1_n\rangle \langle 0_n|$ and $\sigma_n^- = |0_n\rangle \langle 1_n|$: raising and lowering ionic operators a^{\dagger} and a: phonon creation and annihilation operators $\nu \gg 2.6\Omega_n \eta / \sqrt{N}$

• Laser tuned near blue-sideband resonance: $\omega_L(t) = \omega_0 + \nu - \delta(t)$

(日) (周) (日) (日)

conserves the **DIFFERENCE** of ionic excitations and phonons $|0\rangle_{ion}|n\rangle_{phonon} \xrightarrow{\text{blue}} |1\rangle_{ion}|n+1\rangle_{phonon}$

Nikolay Vitanov (Uni Sofia) Faster QIP with Trapped Ions Conf Trapped Ions 13 / 46

2

Nikolay Vitanov (Uni Sofia) Faster QIP with Trapped Ions Conf Trapped Ions 14 / 46

2

Nikolay Vitanov (Uni Sofia) Faster QIP with Trapped Ions Conf Trapped Ions 15 / 46

æ

Image: A matrix

Nikolay Vitanov (Uni Sofia) Faster QIP with Trapped Ions Conf Trapped Ions 16 / 46

Image: A matrix

3

MORRIS-SHORE TRANSFORMATION

$$\mathbf{I}_{MS}(t) = \frac{\hbar}{2} \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \Omega(t) \\ 0 & 0 & \cdots & \Omega(t) & 2\delta \end{bmatrix}$$

$$\Omega(t) = \sqrt{\sum_{n=1}^{N} |\Omega_n(t)|^2}$$

∃ ⊳

ŀ

PROPAGATOR: HOUSEHOLDER REFLECTION

$$\mathbf{U}_{MS} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha & \beta \\ 0 & 0 & \cdots & -\beta^* & \alpha^* \end{bmatrix}$$

 $\alpha,\,\beta$ are Cayley-Klein parameters $|\alpha|^2+|\beta|^2=1$

For $|\beta| = 0$ and $\alpha = e^{i\varphi}$ the propagator of the degenerate set is

$$\begin{split} \mathbf{U} &= \mathbf{M}(\chi;\varphi) = \mathbf{I} + \left(e^{i\varphi} - 1\right) |\chi\rangle\langle\chi| \\ & \text{Householder reflection} \end{split}$$

 $|\chi\rangle = [\Omega_1, \Omega_2, \dots, \Omega_N]$ (complex vector)

ES Kyoseva, NVV, Phys. Rev. A 73, 023420 (2006)

HOUSEHOLDER REFLECTIONS: IMPLEMENTATIONS

fulfill the conditions $|\beta| = 0$ and $\alpha = e^{i\varphi}$

• Standard HR: $\mathbf{M}(\chi) = \mathbf{I} - 2|\chi\rangle\langle\chi|$ ($\varphi = \pi$)

Exact resonance $(\Delta = 0)$: for any pulse shape f(t) and rms pulse area $A = \Omega \int_{-\infty}^{\infty} f(t) dt = 2(2k+1)\pi$ (k = 0, 1, 2, ...) $\Omega^2 = \sum_{n=1}^{N} |\Omega_n|^2$

• Generalized HR: $\mathbf{M}(\chi; \varphi) = \mathbf{I} + (e^{i\varphi} - 1) |\chi\rangle\langle\chi|$

Specific detunings off resonance

Example: for $f(t) = \operatorname{sech}(t/T)$, with rms area $A = \pi gT = 2\pi l$ (l = 1, 2, ...), the desired phase φ is produced by a detuning δ obeying

$$\varphi = 2\arg \prod_{k=0}^{l-1} \left[\delta T + i(2k+1) \right]$$

Far-off-resonant fields: Generalized HR is realized automatically, with

$$\varphi \approx \frac{g^2}{\delta} \int_{-\infty}^{\infty} f^2(t) dt$$

DEGENERATE LEVELS: COUPLED REFLECTIONS

 $|\mu_m\rangle$ and $|\nu_m\rangle$ are eigenstates resp. of $\mathbf{V}^{\dagger}\mathbf{V}$ and \mathbf{VV}^{\dagger}

For $|\beta_m| = 0$ and $\alpha_m = e^{i\varphi_m}$ $(m = 1, 2, ..., M; M \leq N)$ the propagators in the two degenerate sets are

 $\begin{aligned} \mathbf{U}_{M} &= \mathbf{I} + \sum_{m=1}^{M} \left(e^{-i\varphi_{m}} - 1 \right) |\mu_{m}\rangle \langle \mu_{m}| = \prod_{m=1}^{M} \mathbf{M}(\mu_{m}; -\varphi_{m}) \\ \mathbf{U}_{N} &= \mathbf{I} + \sum_{m=1}^{M} \left(e^{i\varphi_{m}} - 1 \right) |\nu_{m}\rangle \langle \nu_{m}| = \prod_{m=1}^{M} \mathbf{M}(\nu_{m}; \varphi_{m}) \\ \text{products of Householder reflections} \end{aligned}$

 \mathbf{U}_M and \mathbf{U}_N can be reduced to single reflections by using $\mathbf{M}(\mu_m; 2k\pi) = \mathbf{I}!$

ES Kyoseva, NVV, BW Shore, J. Mod. Opt. 54, S393 (2007)

HOUSEHOLDER REFLECTIONS: APPLICATIONS

We used Householder reflections to:

- create highly entangled states
- navigate between entangled states in a single step
- create arbitrary preselected partially mixed states
- construct arbitrary N-dimensional unitaries in < N steps $[\mathcal{O}(N^2)$ by standard methods]
- synthesize discrete (quantum) Fourier transforms in $\approx \frac{2}{3}N$ steps
- generate random matrices
- implement quantum algorithms (Grover search)

Two steps

- mathematical: by Householder reflections
- physical: uses the implementation with degenerate levels

Peter Ivanov, Elica Kyoseva, Boyan Torosov, Svetoslav Ivanov, Ian Linington Phys. Rev. A 73, 023420 (2006); 74, 022323 (2006); 74, 053402 (2006); 75, 012323 (2007); 77, 012335 (2008); 77, 010302(R); 77, 062327 (2008); 77, 063837 (2008); 78, 012323 (2008); 78, 030301(R) (2008); 79, 012322 (2009); 80, 022329 (2009); 81, 042328 (2010); J. Mod. Opt. 54, S393 (2007)

イロト 不得下 イヨト イヨト

QUANTUM FOURIER TRANSFORM (QFT)

QFT: unitary operator with the following action on a set $|n\rangle$ (n = 1, 2..., N) $\mathbf{U}_{N}^{F}|n\rangle = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} e^{2\pi i (n-1)(k-1)/N} |k\rangle$

$$\mathbf{U}_{N}^{F} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^{2} & \cdots & w^{N-1} \\ 1 & w^{2} & w^{4} & \cdots & w^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & \cdots & w^{(N-1)(N-1)} \end{bmatrix} \qquad w = e^{2\pi i/N}$$

QFT can be represented as a product of HRs

N	2	3	4	5	6	7	8	9	10
steps	1	2	2	3	4	5	5	6	7

Standard methods use $\mathcal{O}(N^2)$ steps.

PA Ivanov, ES Kyoseva, NVV, Phys. Rev. A 74, 022323 (2006)

< ロト (同) (三) (三)

QFT: EXAMPLES

•
$$\mathbf{U}_{2}^{F} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \mathbf{M}(\chi), \quad \text{with } |\chi\rangle = \frac{1}{2} \begin{bmatrix} -\sqrt{2 - \sqrt{2}}, \sqrt{2 + \sqrt{2}} \end{bmatrix}^{T}$$

• $\mathbf{U}_{3}^{F} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{2\pi i/3} & e^{-2\pi i/3} \\ 1 & e^{-2\pi i/3} & e^{2\pi i/3} \end{bmatrix} = \mathbf{M}(\chi_{1}; \pi) \mathbf{M}(\chi_{2}; \pi/2)$
with $|\chi_{1}\rangle = \frac{1}{2}\sqrt{1 + \frac{1}{\sqrt{3}}} \begin{bmatrix} 1 - \sqrt{3}, 1, 1 \end{bmatrix}^{T}, \quad |\chi_{2}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0, 1, -1 \end{bmatrix}^{T}$
• $\mathbf{U}_{4}^{F} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \mathbf{M}(\chi_{1}; \pi) \mathbf{M}(\chi_{2}; \pi/2)$
with $|\chi_{1}\rangle = \frac{1}{2} \begin{bmatrix} -1, 1, 1, 1 \end{bmatrix}^{T} \quad |\chi_{2}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0, 1, 0, -1 \end{bmatrix}^{T}$

PA Ivanov, ES Kyoseva, NVV, Phys. Rev. A 74, 022323 (2006)

イロト イヨト イヨト イヨト

æ

DICKE STATES

Nikolay Vitanov (Uni Sofia) Faster QIP with Trapped Ions Conf Trapped Ions 24 / 46

Dicke-symmetric states of N particles and m excitations robust against decoherence, particle loss and measurement useful resource for quantum computing

$$|W_m^N\rangle \equiv \frac{1}{\sqrt{C_m^N}} \sum_k P_k |\underbrace{1, 1, \dots, 1}_{m \text{ excitations}}, 0, \dots, 0\rangle,$$

 $\{P_k\}$ is the set of all distinct combinations of ions; $C_m^N \equiv \frac{N!}{m!(N-m)!} = \binom{N}{m}$ *W*-state: $|1_10_20_3...0_N\rangle + |0_11_20_3...0_N\rangle + ... + |0_10_20_3...1_N\rangle$ W_2 -state: 2 excitations shared among N particles W_m -state: m excitations shared among N particles

addressing the ions one or two at a time requires a costly increase in the number of steps as the complexity of the state grows

FAST APPROACH [Linington, PRA 77, 010302 (2008); 77, 062327 (2008)]

- global addressing with only a single chirped adiabatic pulse
- applicable to any number of ions and excitations

Nikolav Vitanov (Uni Sofia)

Morris-Shore transformation for 4 ions and 2 phonons.

Image: A matrix

A B A A B A

MORRIS-SHORE HAMILTONIAN

If we start in state $|0_1 0_2 \dots 0_N\rangle$ then the evolution is confined to the longest (m + 1)-state MS ladder:

- the lowest state is $|0_1 0_2 \dots 0_N \rangle |m \rangle$
- the highest is $|W_m^N\rangle$
- all intermediate states (n = 1, ..., m 1) are symmetric Dicke states

Morris-Shore Hamiltonian for the longest chain

$$\mathbf{H}_{N+1}(t) = \hbar \begin{bmatrix} 0 & \lambda_{0,1} & 0 & \dots & 0 & 0 \\ \lambda_{0,1} & \delta & \lambda_{1,2} & \dots & 0 & 0 \\ 0 & \lambda_{1,2} & 2\delta & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & (m-1)\delta & \lambda_{m-1,m} \\ 0 & 0 & 0 & \dots & \lambda_{m-1,m} & m\delta \end{bmatrix}$$

$$\lambda_{n,n-1}(t) = g(t)\sqrt{n(m-n+1)(N-m+n)}$$

coupling between adjacent levels in the MS chain

・四ト ・ヨト ・ヨト

CREATION OF DICKE STATES: BOWTIE CROSSING

- Start in the *m*-phonon Fock state $|0_1 0_2 \cdots 0_N\rangle |m\rangle$.
- Apply an adiabatic chirped pulse addressing all N ions simultaneously The *m*-phonon state and the Dicke state $|W_m^N\rangle$ are connected adiabatically via a bowtie level-crossing.
 - \implies the system is transferred adiabatically into the Dicke state $|W_m^N\rangle$:

$$|0_1 0_2 \cdots 0_N \rangle |m\rangle \xrightarrow{\text{red}} |W_m^N \rangle$$

Evolution of the populations of all 22 states for the creation of a $|W_2^6\rangle$ state (0-phonon: 1 state; 1-phonon: 6 states; 2-phonon: 15 states) for the sech-tanh model with $\Omega_0 T = 10$; BT = 6. The final fidelity is 99.996%. (Even when laser intensity is allowed to fluctuate by 10% across the chain, the overall fidelity is above 99.3%.)

CLUSTER STATES

Image: A matrix

CLUSTER STATES

One-way quantum computer: Qubits are initialized in a highly entangled cluster state; the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes

A linear cluster state linear cluster states can be constructed as follows: • each qubit is prepared in the superposition state $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ • a control-phase gate graph states is then applied between every nearest neighbor pair N-1 $\left|\Psi\right\rangle_{\mathfrak{C}}=\prod_{n=1}^{\infty}\Phi_{n,n+1}\left|+\right\rangle^{\otimes N}$

c-phase gate

Image: A math a math

Demonstrated with photons.

R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 910 (2001); 86, 5188 (2001)

Four-qubit cluster state

$$|\Psi_4\rangle = \frac{1}{2} [|0000\rangle + |1100\rangle + |0011\rangle - |1111\rangle]$$

Five-qubit cluster state

$$\begin{split} |\Psi\rangle_{\mathfrak{C}_5} &= \frac{1}{\sqrt{8}} (|00000\rangle + |00011\rangle + |00101\rangle + |00110\rangle \\ &+ |11000\rangle + |11011\rangle - |11101\rangle - |11110\rangle) \end{split}$$

Six-qubit cluster state

$$\begin{split} |\Psi\rangle_{\mathfrak{C}_{6}} &= \frac{1}{4}[|000000\rangle + |000011\rangle + |000101\rangle + |000110\rangle \\ &+ |011000\rangle + |011011\rangle - |011101\rangle - |011110\rangle \\ &+ |101000\rangle + |101011\rangle - |101101\rangle - |101110\rangle \\ &+ |110000\rangle + |110011\rangle + |110101\rangle + |110110\rangle] \end{split}$$

CLUSTER STATES: OUR TECHNIQUE

- N identical two-state ions, with a resonance frequency ω_0 , in a linear Paul trap.
- Each ion interacts with two laser fields with frequencies tuned near the blueand red-sideband resonance of a selected vibrational mode ν_p , with detunings $\pm \delta$:
 - $\omega_b = \omega_0 + \nu_p \delta$
 - $\omega_r = \omega_0 \nu_p + \delta$
- The Hamiltonian is $\mathbf{H}_I = \hbar \sum_{k=1}^N \sigma_k^+ \left[a^{\dagger} g_k^b \mathrm{e}^{\mathrm{i}(\delta t + \phi_k^b)} + a g_k^r \mathrm{e}^{-\mathrm{i}(\delta t \phi_k^r)} \right] + \mathrm{h.c.}$ $g_k^c(t) = s_k^p \eta_k^c \Omega_k^c(t) / (2\sqrt{N}) \ (c = r, b)$: laser coupling of the kth ion
- the Rabi frequencies $\Omega_k^c(t)$ have the same time dependence f(t).
- the detuning δ from the sideband to be sufficiently large $(|\delta| \gg g_k^{b,r})$, so that all transitions with detunings $l\delta$ $(l = \pm 2, \pm 3, ...)$ can be neglected
- the blue and red couplings for each ion are equal, $g_k^b(t) = g_k^r(t) = g_k f(t)$
- the laser phases satisfy $\phi_k^b = l_k \pi \phi$, and $\phi_k^r = l_k \pi + \phi$ $(l_k = 0, 1, ...)$

PA Ivanov, NVV, MB Plenio, Phys. Rev. A 78, 012323 (2008)

・ロト ・四ト ・ヨト ・ヨト

N = 4 cluster state linkage pattern

PA Ivanov, NVV, MB Plenio, Phys. Rev. A 78, 012323 (2008)

A B b

N = 4 cluster state linkage pattern

Nikolay Vitanov (Uni Sofia)

LINEAR CLUSTER STATE: PROPAGATOR FOR N = 4

$$\mathbf{U} = \mathbf{1} + \sum_{k=1}^{8} \left(e^{i\varphi_k} - 1 \right) |\chi_k\rangle \langle \chi_k| = \prod_{k=1}^{8} \mathbf{M}(\chi_k; \varphi_k)$$
$$\varphi_k = \frac{(\Lambda_k^{n,n+1})^2 - \Lambda_k^{n-1,n}}{\delta} \int_{-\infty}^{\infty} f^2(t) dt$$

the dependence on the phonon number n is removed (in 1st order of PT, as in Mølmer-Sörensen's gate)

The generalized Householder reflection (HR) $\mathbf{M}(\chi; \varphi) = \mathbf{1} + (e^{i\varphi} - 1) |\chi\rangle\langle\chi|$

• For $\varphi = 2l\pi$ (with *l* integer) we have $\mathbf{M}(\chi; 2l\pi) = \mathbf{1}$.

• For $\varphi = (2l+1)\pi$, the HR reduces to a standard HR: $\mathbf{M}(\chi; (2l+1)\pi) = \mathbf{M}(\chi) = \mathbf{1} - 2|\chi\rangle\langle\chi|$

> We observe that $\mathbf{M}(\chi_8) \mathbf{M}(\chi_7) |0000\rangle = |\Psi\rangle_{\mathfrak{C}_4}$ \Downarrow we must have $\varphi_k = 2m_k \pi \quad (k = 1, 2, \dots, 6)$ $\varphi_k = (2m_k + 1)\pi \quad (k = 7, 8)$

PA Ivanov, NVV, MB Plenio, Phys. Rev. A 78, 012323 (2008)

() < </p>

LINEAR CLUSTER STATES: N = 4

Values for the scaled couplings $\tilde{g}_k = g_k / \sqrt{\delta T \sqrt{2\pi}}$ (k = 1, 2, 3, 4) for $\delta T = 1000$ and a Gaussian pulse shape $f(t) = \exp(-t^2/T^2)$.

step	\widetilde{g}_1	\widetilde{g}_2	\widetilde{g}_3	\widetilde{g}_4
1	1/4	1/4	1/4	1/4
2	$\sqrt{3}/4$	$\sqrt{3}/4$	$-\sqrt{3}/4$	$-\sqrt{3}/4$

Implementation

- apply a global pulse with amplitudes $\tilde{g}_k = \frac{1}{4}$ (k = 1, 2, 3, 4)
- flip the signs of qubits 3 and 4
- apply a global pulse with amplitude $\tilde{g}_k = \frac{\sqrt{3}}{4}$ (k = 1, 2, 3, 4)

PA Ivanov, NVV, MB Plenio, Phys. Rev. A 78, 012323 (2008)

GROVER SEARCH

Image: A matrix

GROVER'S QUANTUM SEARCH

What it does?

- \bullet searches an arbitrary element in an unsorted database with ${\cal N}$ entries
- finds the marked item with only $\mathcal{O}(\sqrt{N})$ calls to an oracle (returns "yes" or "no") (classical search requires $\mathcal{N}/2$ tries),

$$N_G = \left[\pi/(2\sin^{-1}(2\sqrt{\mathcal{N}-1}/\mathcal{N}))\right] \sim \left[(\pi/4)\sqrt{\mathcal{N}}\right] \quad \text{for large } \mathcal{N}$$

• as \mathcal{N} increases, the fidelity approaches unity, with error $\mathcal{O}(1/\mathcal{N})$ (fully deterministic version also available)

Implementation

- initialize the database in an equal coherent superposition of states $|a\rangle=[1,1,\ldots,1]^T/\sqrt{N}$
- $\bullet\,$ an oracle flips the phase of the marked element $|m\rangle \!\colon {\bf M}(m) = {\bf 1} 2|m\rangle \langle m|$
- a reflection of the state vector about the mean: $\mathbf{M}(a) = \mathbf{1} 2|a\rangle\langle a|$

Experimental demonstration

- two (N = 4) and three (N = 8) qubits in NMR
- two qubits (N = 4) in ion traps
- N = 32 items in classical optics

Morris-Shore transformation for 4 ions and 2 phonons.

∃ ⊳

Reflection about the average

Propagator within the $n_i = 2$ manifold in the computational basis

$$\mathbf{U} = \mathbf{I} + (e^{i\varphi_a} - 1)|a\rangle\langle a| + (e^{i\varphi_b} - 1)\sum_{k=1}^N |\chi_k\rangle\langle \chi_k| = \mathbf{M}(a, \varphi_a)\prod_{k=1}^N \mathbf{M}(\chi_k, \varphi_b)$$

 $\mathbf{M}(a, \varphi_a)$: exactly the reflection about the mean needed for Grover's search!

We wish that $\mathbf{U} \equiv \mathbf{M}(a, \varphi)$ \Downarrow $\mathbf{M}(\chi_k, 2l\pi) = \mathbf{I}$

・ロト ・四ト ・ヨト ・ヨト

 $\varphi_a = \varphi + 2j\pi,$ $\varphi_b = 2l\pi.$

IE Linington, PA Ivanov, NVV, Phys. Rev. A 79, 012322 (2009)

GROVER SEARCH: IMPLEMENTATION

A B b

42 / 46

N ions and two excitations register dim. $\mathcal{N} = N(N-1)/2$ The ions are initialized in the Dicke state $|W_2^N\rangle$.

$$\begin{split} &\text{HR parameters} \\ &\delta T = 10 \text{ in all cases} \\ &g(t) = g_0 \mathrm{e}^{-(t-t_n)^2/T^2} \\ &g_0 T \approx 10.739, 13.587, 17.954, 21.547 \\ &\text{The oracle phase is} \\ &\varphi \approx -0.94\pi, -0.98\pi, \pi, 0.95\pi. \end{split}$$

IE Linington, PA Ivanov, NVV, Phys. Rev. A 79, 012322 (2009)

GROVER SEARCH IN A DICKE DATABASE

Dicke database

N ions and N/2 excitations largest set of states

 $\mathcal{N} = C_{N/2}^N \sim 2^N \sqrt{\frac{2}{\pi N}}$

Initial state the Dicke state $|W_{N/2}^N\rangle$ equal superposition

Reflection about the mean reflection about $|W_{N/2}^N\rangle$

46

 $\frac{\mathbf{Oracle}}{C^{N/2}\text{-phase gate}}$

SS Ivanov, PA Ivanov, IE Linington, NV Vitanov, Phys. Rev. A 81, 042328 (2010)

GROVER SEARCH IN A DICKE DATABASE

#ions	#elements	#steps	oracle		reflection	
N	\mathcal{N}	n_G	δT	$\Omega_n T$	δT	$\Omega_n T$
6	20	3	19.470	28.610	10.320	25.830
8	70	6	21.400	10.800	21.050	24.400
10	252	12	15.687	70.322	88.565	87.142

SS Ivanov, PA Ivanov, IE Linington, NV Vitanov, Phys. Rev. A 81, 042328 (2010)

Population of Marked State

Conf Trapped Ions

CONCLUSIONS

Universal quantum computer: Too many gates needed to construct a single mathematical step.

Example 1: about 100 pulses used in NMR demonstration of Grover search with 3 qubits ($\mathcal{N} = 8$ states, 3 + 3 logical steps).

Example 2: about 10^3 pulses needed for factoring the number 15 with ions.

Preskill (1996): 396 N^3 pulses and 5N + 1 qubits needed for N-bit number (later reduced)

Alternative: use the symmetries of the ion system to construct the operations in fewer steps

 \Rightarrow single-purpose quantum computer (like quantum simulator) ideally: 1 logical step = 1 physical step

Linear ion chain: ideally suited for Householder reflection \rightarrow Grover's search Ring trap: ideal for quantum Fourier transform \rightarrow Shor's factoring etc.

circulant Hamiltonian \rightarrow discrete Fourier transform

46 / 46