ClusterTrap: A Penning Trap for Cluster Research

(Ion Trapping for Cluster Research)

Lutz Schweikhard

ClusterTrap

Institut für Physik Ernst-Moritz-Arndt-Universität 17487 Greifswald Germany

ECTI, 2010-09, Redworth Hall

Overview

Other traps and applications FT-ICR MS, precison MS of radionuclides, EBIT, (electrostatic ion-beam traps => Wada)

ClusterTrap why? how? what? Other cluster-storage devices

FT-ICR MS = FTMS

Fourier Transform (Ion Cyclotron Resonance) Mass Spectrometry

Detection of Ion Motion (after broad-band excitation)

Courtesy of Roland Jertz, Bruker Daltonik/Bremen

Protein A (44 kDa) Broad-Band Spectrum

FT-ICR MS systems in use (as a function of time)

Typically > 500 k€a piece

Three independent companies developing and selling FT-ICR systems

A.G. Marshall and LS, IJMS 118/119 (1992)

<u>Overview</u>

Other traps and applications FT-ICR MS, precison MS of radionuclides, EBIT, (electrostatic ion-beam traps => Wada)

ClusterTrap why? how? what? Other cluster-storage devices

Precision mass measurements of short-lived nuclides

Recent exp. results, e.g.: PRL **98**, 162501(2007); **100**, 072501(2008); **101**, 252502(2008); **101**, 262501(2008); **102**, 112501(2009); **105**, 032502(2010)

One of the off-springs: **SHIPTRAP** at GSI/Darmstadt

First direct mass measurements above uranium

<u>Overview</u>

Other traps and applications FT-ICR MS, precison MS of radionuclides, EBIT, (electrostatic ion-beam traps => Wada)

ClusterTrap why? how? what? Other cluster-storage devices

EBIT: Electro-Beam Ion Trap or How to produce and confine highly-charged ions?

Electrostatic trapping is not possible by static electric fields only

unless space charge allowed

Here by compression of an electron beam by strong B-field

Replace Laplace: $\Delta \phi = 0$ by Poisson: $\Delta \phi = \rho/\epsilon_0$

FIRST X-RAY IMAGE OF A COMET X-ray emission from comets

due to charge transfer from highly-charged ions of solar wind colliding with neutral atoms of the comets

Such reactions as well as lifetimes of metastable states are studied in the **"magnetic-trapping mode"** of EBIT P. Beiersdorfer, LS et al., RSI 67, 3818 (1996)

Lisse et al., UT 27.77-27.85 March 1996 Science 274, 205 (1996)

Overview

Other traps and applications ClusterTrap clusters? why? how? what? Other cluster-storage devices

From Atoms to Bulk Matter: Clusters

T.P. Martin (1984)

Scaling Laws

from Roy L. Johnston: Atomic and Molecular Clusters (London, New York, 2002)

Noble gas clusters: geometric shells

Size selection by **mass spec. as first step** for detailed studies ! mass spec. also for reaction **product analysis** => **MS-MS**

Overview

Other traps and applications ClusterTrap clusters? why? how? what? Other cluster-storage devices

Why cluster trapping? (as compared to beams)

- extended interaction periods

- extended reaction periods
- multi-step preparation

Overview

Other traps and applications ClusterTrap clusters? why? how? what? Other cluster-storage devices

Experimental set-up of ClusterTrap @ Greifswald

S. Becker et al., RSI (1995) LS et al., EPJ D (2003)

Experimental set-up of ClusterTrap @ Greifswald

S. Becker et al., RSI (1995) LS et al., EPJ D (2003)

GSI

ClusterTrap

at Univ. of Greifswald

founded in 1456 "full university" ca. 12000 students

> **Obergurgl Next ECTI**

Trap Electrodes

inner diameter of ring electrode 40 mm

Note: Miniaturization is not appreciated !

SELECTION

INTERACTION (e.g. electron bombardment)

RE-ACTION (e.g. ionization and dissociation)

EJECTION for TOF mass analysis

<u>Overview</u>

Other traps and applications FT-ICR MS, precison MS of radionuclides, EBITs, electrostatic ion-beam traps

ClusterTrap

clusters? why? how? what? Other cluster-storage devices

electron bombardment of cations time-of-flight spectra (gold clusters)

CAPTURE

ACCUMULATION

SELECTION

ELECTRON BOMBARDMENT

A. Herlert et al., J. Electron.Spectrosc. (2000)

Electron Impact Ionization/Dissociation of Ag-clusters

S. Krückeberg et al. (1999)

Collision Induced Dissociation (CID)

(Many) collisions with noble-gas atoms

dipole excitation

CID of product ions: How do they break apart?

=> decay channels

capture/accumulation and electron bombardment

1. selection

CID

2. selection

CID

CID after first selection

S. Krückeberg et al., ZPD (1997)
CID revisited: At what energy do they break apart ? => dissociation energies

Krückeberg (EPJD, 1999)

Dissociation energies from CID

S. Krückeberg et al., JCP (1999)

Dissociation energies from CID

S. Krückeberg et al., PRA (1999)

Dissociation energies from Time – resolved photodissociation

C. Walther et al., CPL (1996), M. Lindinger et al., ZPD (1997)

Time – resolved photodissociation

Determination of dissociation energy – in principle

Determination of dissociation energy – in principle

and in praxis: - value of D is model-dependent - value of D is dep. on exc. energy E Observation of precursor and product(s)

allows

observation of sequential decay

M. Vogel et al., PRL (2001)

Quasi model-free determination of D

What's the trick?

no need to model the residual excitation energy left after the dissociation

What's the pay-off? two coordinated measurements needed

for $\tau = \tau$: $E_n - D_n - KER = E_{n-1}$ $\longrightarrow D_n = E_n - E_{n-1} - KER$

M. Vogel et al., PRL (2001)

In practise: perform a couple of measurements

Sequential Excitation i.e. pump – probe at up to tens of milliseconds

=> Investigation of Radiative Cooling

C. Walther et al., PRL (1999)

Attachment and photodetachment of methanol

G. Dietrich et al., CPL (1996), ... JCP (2000)

Moving on to further charge states by electron-cluster interaction:

 Electron-impact ionisation for cationic clusters (see above)

- Electron attachment for anionic clusters

Dianion production

Dianion production

Dianion production

Simultan. storage of clusters, $m_{cluster} \approx 5000 \text{ u}$ and electrons, $m_e \approx 1/2000 \text{ u}$

Silver - cluster dianions

Herlert et al., EPJ D (2001)

CID (collision-ind. dissociation) is not always a good idea

as charge-changing reactions (here electron emission) can lead to ion loss due to increased motional amplitudes

Herlert et al. IJMS 2004

Photoabsorption of dianions

branching ratio of decay pathways (monomer vs. electron emission)

Tetra-(quad-)anionic aluminum clusters production photoexcitation

N. Walsh et al., J. Phys. B 42 (2009) 154024

M. Arndt (Paul trap) S. Bandelow (Paul trap) Ch. Droese (SHIPTRAP/GSI) F. Martinez (ClusterTrap) Dr. G. Marx (almost all) M. Rosenbusch (ISOLTRAP/CERN) L. S. A. Vass(ClusterTrap) B. F. Wienholtz (just started) R. Wolf (ISOLTRAP/CERN) F. Ziegler (ClusterTrap)

Thanks also toDiploma/Master students:DFG, BMBF, EU, ... Ch. Breitenfeldt, S. Gierke, S. Knaur

We have moved from

Max-Planck-Institut für Plasmaphysik

We have moved to the new building of the Inst. of Physics

Current modifications

Overview

Other traps and applications ClusterTrap clusters? why? how? what? Other cluster-storage devices

multi-step reactions

growth of benzene from ethylene on iron tetramers Schnabel et al. (Irion) J. Chem., 1991

repeated selection and further reaction

Angew. Chem., 1992

two [!] cycles such as shown ⇒ catalysis research

Use of other types of traps: Electrostatic ion beam traps (detection of neutral products)

"Cone Trap" Bernard et al. NIM B, 2003 Trapping of C₆₀³⁺

Inspired by Zajfman & Co.

Use of more exotic probes: Trapped ion electron diffraction

2.3%

3.7%

14%

10%

15%

(1) fcc D_{a}

(2) d-fcc C

(3) distico C

(4) dist-fcc C_{a}

(5) deca C

0eV

0.48eV

0.59eV

0.61eV

0.57eV

Paul trap

CCD

phosphor screen Paul trap electron gun bender cluster source Schooß et al. (Kappes)

Phil. Trans. Royal Soc. 2010

> based on J.H. Parks & Co Maier-Borst et al., PRA 1999 Krückeberg et al., PRL 2000

IR-MPI (infrared multiple photon dissociation) spectroscopy of mass-selected clusters (etc.)

coupled to 3D rf trap or rather the other way

Oomens et al. (von Helden, Meijer) IJMS 2006

X-ray spectroscopy on size-selected clusters in an ion trap (at BESSY/Berlin)

Lau & Co. PRL 101, 2008 PRB 79, 2009 JPhysB 42, 2009 PRA 79, 2009

A novel concept for the storage of cold ions (20 K) within an FT-ICR spectrometer

<u>Overview</u>

Other traps and applications ClusterTrap clusters? why? how? what? Other cluster-storage devices The End **Thanks for your attention !**